HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cm2j Structured version   Visualization version   GIF version

Theorem cm2j 31598
Description: A lattice element that commutes with two others also commutes with their join. Theorem 4.2 of [Beran] p. 49. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
cm2j (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → 𝐴 𝐶 (𝐵 𝐶))

Proof of Theorem cm2j
StepHypRef Expression
1 cmcm 31592 . . . . . . . . . . 11 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐵 𝐶 𝐴))
2 cmbr 31562 . . . . . . . . . . . 12 ((𝐵C𝐴C ) → (𝐵 𝐶 𝐴𝐵 = ((𝐵𝐴) ∨ (𝐵 ∩ (⊥‘𝐴)))))
32ancoms 458 . . . . . . . . . . 11 ((𝐴C𝐵C ) → (𝐵 𝐶 𝐴𝐵 = ((𝐵𝐴) ∨ (𝐵 ∩ (⊥‘𝐴)))))
41, 3bitrd 279 . . . . . . . . . 10 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐵 = ((𝐵𝐴) ∨ (𝐵 ∩ (⊥‘𝐴)))))
54biimpa 476 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝐴 𝐶 𝐵) → 𝐵 = ((𝐵𝐴) ∨ (𝐵 ∩ (⊥‘𝐴))))
6 incom 4159 . . . . . . . . . 10 (𝐵𝐴) = (𝐴𝐵)
7 incom 4159 . . . . . . . . . 10 (𝐵 ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ 𝐵)
86, 7oveq12i 7358 . . . . . . . . 9 ((𝐵𝐴) ∨ (𝐵 ∩ (⊥‘𝐴))) = ((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵))
95, 8eqtrdi 2782 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝐴 𝐶 𝐵) → 𝐵 = ((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)))
1093adantl3 1169 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ 𝐴 𝐶 𝐵) → 𝐵 = ((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)))
1110adantrr 717 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → 𝐵 = ((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)))
12 cmcm 31592 . . . . . . . . . . 11 ((𝐴C𝐶C ) → (𝐴 𝐶 𝐶𝐶 𝐶 𝐴))
13 cmbr 31562 . . . . . . . . . . . 12 ((𝐶C𝐴C ) → (𝐶 𝐶 𝐴𝐶 = ((𝐶𝐴) ∨ (𝐶 ∩ (⊥‘𝐴)))))
1413ancoms 458 . . . . . . . . . . 11 ((𝐴C𝐶C ) → (𝐶 𝐶 𝐴𝐶 = ((𝐶𝐴) ∨ (𝐶 ∩ (⊥‘𝐴)))))
1512, 14bitrd 279 . . . . . . . . . 10 ((𝐴C𝐶C ) → (𝐴 𝐶 𝐶𝐶 = ((𝐶𝐴) ∨ (𝐶 ∩ (⊥‘𝐴)))))
1615biimpa 476 . . . . . . . . 9 (((𝐴C𝐶C ) ∧ 𝐴 𝐶 𝐶) → 𝐶 = ((𝐶𝐴) ∨ (𝐶 ∩ (⊥‘𝐴))))
17 incom 4159 . . . . . . . . . 10 (𝐶𝐴) = (𝐴𝐶)
18 incom 4159 . . . . . . . . . 10 (𝐶 ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ 𝐶)
1917, 18oveq12i 7358 . . . . . . . . 9 ((𝐶𝐴) ∨ (𝐶 ∩ (⊥‘𝐴))) = ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶))
2016, 19eqtrdi 2782 . . . . . . . 8 (((𝐴C𝐶C ) ∧ 𝐴 𝐶 𝐶) → 𝐶 = ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶)))
21203adantl2 1168 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ 𝐴 𝐶 𝐶) → 𝐶 = ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶)))
2221adantrl 716 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → 𝐶 = ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶)))
2311, 22oveq12d 7364 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐵 𝐶) = (((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)) ∨ ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶))))
24 chincl 31477 . . . . . . . . 9 ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )
25 choccl 31284 . . . . . . . . . 10 (𝐴C → (⊥‘𝐴) ∈ C )
26 chincl 31477 . . . . . . . . . 10 (((⊥‘𝐴) ∈ C𝐵C ) → ((⊥‘𝐴) ∩ 𝐵) ∈ C )
2725, 26sylan 580 . . . . . . . . 9 ((𝐴C𝐵C ) → ((⊥‘𝐴) ∩ 𝐵) ∈ C )
2824, 27jca 511 . . . . . . . 8 ((𝐴C𝐵C ) → ((𝐴𝐵) ∈ C ∧ ((⊥‘𝐴) ∩ 𝐵) ∈ C ))
29 chincl 31477 . . . . . . . . 9 ((𝐴C𝐶C ) → (𝐴𝐶) ∈ C )
30 chincl 31477 . . . . . . . . . 10 (((⊥‘𝐴) ∈ C𝐶C ) → ((⊥‘𝐴) ∩ 𝐶) ∈ C )
3125, 30sylan 580 . . . . . . . . 9 ((𝐴C𝐶C ) → ((⊥‘𝐴) ∩ 𝐶) ∈ C )
3229, 31jca 511 . . . . . . . 8 ((𝐴C𝐶C ) → ((𝐴𝐶) ∈ C ∧ ((⊥‘𝐴) ∩ 𝐶) ∈ C ))
33 chj4 31513 . . . . . . . 8 ((((𝐴𝐵) ∈ C ∧ ((⊥‘𝐴) ∩ 𝐵) ∈ C ) ∧ ((𝐴𝐶) ∈ C ∧ ((⊥‘𝐴) ∩ 𝐶) ∈ C )) → (((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)) ∨ ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶))) = (((𝐴𝐵) ∨ (𝐴𝐶)) ∨ (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶))))
3428, 32, 33syl2an 596 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)) ∨ ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶))) = (((𝐴𝐵) ∨ (𝐴𝐶)) ∨ (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶))))
35343impdi 1351 . . . . . 6 ((𝐴C𝐵C𝐶C ) → (((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)) ∨ ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶))) = (((𝐴𝐵) ∨ (𝐴𝐶)) ∨ (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶))))
3635adantr 480 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)) ∨ ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶))) = (((𝐴𝐵) ∨ (𝐴𝐶)) ∨ (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶))))
37 fh1 31596 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))
38 incom 4159 . . . . . . 7 (𝐴 ∩ (𝐵 𝐶)) = ((𝐵 𝐶) ∩ 𝐴)
3937, 38eqtr3di 2781 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = ((𝐵 𝐶) ∩ 𝐴))
40253anim1i 1152 . . . . . . . . 9 ((𝐴C𝐵C𝐶C ) → ((⊥‘𝐴) ∈ C𝐵C𝐶C ))
4140adantr 480 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((⊥‘𝐴) ∈ C𝐵C𝐶C ))
42 cmcm3 31593 . . . . . . . . . . 11 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵 ↔ (⊥‘𝐴) 𝐶 𝐵))
43423adant3 1132 . . . . . . . . . 10 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐶 𝐵 ↔ (⊥‘𝐴) 𝐶 𝐵))
44 cmcm3 31593 . . . . . . . . . . 11 ((𝐴C𝐶C ) → (𝐴 𝐶 𝐶 ↔ (⊥‘𝐴) 𝐶 𝐶))
45443adant2 1131 . . . . . . . . . 10 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐶 𝐶 ↔ (⊥‘𝐴) 𝐶 𝐶))
4643, 45anbi12d 632 . . . . . . . . 9 ((𝐴C𝐵C𝐶C ) → ((𝐴 𝐶 𝐵𝐴 𝐶 𝐶) ↔ ((⊥‘𝐴) 𝐶 𝐵 ∧ (⊥‘𝐴) 𝐶 𝐶)))
4746biimpa 476 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((⊥‘𝐴) 𝐶 𝐵 ∧ (⊥‘𝐴) 𝐶 𝐶))
48 fh1 31596 . . . . . . . 8 ((((⊥‘𝐴) ∈ C𝐵C𝐶C ) ∧ ((⊥‘𝐴) 𝐶 𝐵 ∧ (⊥‘𝐴) 𝐶 𝐶)) → ((⊥‘𝐴) ∩ (𝐵 𝐶)) = (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶)))
4941, 47, 48syl2anc 584 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((⊥‘𝐴) ∩ (𝐵 𝐶)) = (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶)))
50 incom 4159 . . . . . . 7 ((⊥‘𝐴) ∩ (𝐵 𝐶)) = ((𝐵 𝐶) ∩ (⊥‘𝐴))
5149, 50eqtr3di 2781 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶)) = ((𝐵 𝐶) ∩ (⊥‘𝐴)))
5239, 51oveq12d 7364 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∨ (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶))) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴))))
5323, 36, 523eqtrd 2770 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴))))
5453ex 412 . . 3 ((𝐴C𝐵C𝐶C ) → ((𝐴 𝐶 𝐵𝐴 𝐶 𝐶) → (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴)))))
55 chjcl 31335 . . . . 5 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
56 cmcm 31592 . . . . . 6 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 𝐶 (𝐵 𝐶) ↔ (𝐵 𝐶) 𝐶 𝐴))
57 cmbr 31562 . . . . . . 7 (((𝐵 𝐶) ∈ C𝐴C ) → ((𝐵 𝐶) 𝐶 𝐴 ↔ (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴)))))
5857ancoms 458 . . . . . 6 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → ((𝐵 𝐶) 𝐶 𝐴 ↔ (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴)))))
5956, 58bitrd 279 . . . . 5 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 𝐶 (𝐵 𝐶) ↔ (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴)))))
6055, 59sylan2 593 . . . 4 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 𝐶 (𝐵 𝐶) ↔ (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴)))))
61603impb 1114 . . 3 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐶 (𝐵 𝐶) ↔ (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴)))))
6254, 61sylibrd 259 . 2 ((𝐴C𝐵C𝐶C ) → ((𝐴 𝐶 𝐵𝐴 𝐶 𝐶) → 𝐴 𝐶 (𝐵 𝐶)))
6362imp 406 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → 𝐴 𝐶 (𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  cin 3901   class class class wbr 5091  cfv 6481  (class class class)co 7346   C cch 30907  cort 30908   chj 30911   𝐶 ccm 30914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086  ax-hilex 30977  ax-hfvadd 30978  ax-hvcom 30979  ax-hvass 30980  ax-hv0cl 30981  ax-hvaddid 30982  ax-hfvmul 30983  ax-hvmulid 30984  ax-hvmulass 30985  ax-hvdistr1 30986  ax-hvdistr2 30987  ax-hvmul0 30988  ax-hfi 31057  ax-his1 31060  ax-his2 31061  ax-his3 31062  ax-his4 31063  ax-hcompl 31180
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-fbas 21289  df-fg 21290  df-cnfld 21293  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-cn 23143  df-cnp 23144  df-lm 23145  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cfil 25183  df-cau 25184  df-cmet 25185  df-grpo 30471  df-gid 30472  df-ginv 30473  df-gdiv 30474  df-ablo 30523  df-vc 30537  df-nv 30570  df-va 30573  df-ba 30574  df-sm 30575  df-0v 30576  df-vs 30577  df-nmcv 30578  df-ims 30579  df-dip 30679  df-ssp 30700  df-ph 30791  df-cbn 30841  df-hnorm 30946  df-hba 30947  df-hvsub 30949  df-hlim 30950  df-hcau 30951  df-sh 31185  df-ch 31199  df-oc 31230  df-ch0 31231  df-shs 31286  df-chj 31288  df-cm 31561
This theorem is referenced by:  cm2ji  31603
  Copyright terms: Public domain W3C validator