HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cm2j Structured version   Visualization version   GIF version

Theorem cm2j 29655
Description: A lattice element that commutes with two others also commutes with their join. Theorem 4.2 of [Beran] p. 49. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
cm2j (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → 𝐴 𝐶 (𝐵 𝐶))

Proof of Theorem cm2j
StepHypRef Expression
1 cmcm 29649 . . . . . . . . . . 11 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐵 𝐶 𝐴))
2 cmbr 29619 . . . . . . . . . . . 12 ((𝐵C𝐴C ) → (𝐵 𝐶 𝐴𝐵 = ((𝐵𝐴) ∨ (𝐵 ∩ (⊥‘𝐴)))))
32ancoms 462 . . . . . . . . . . 11 ((𝐴C𝐵C ) → (𝐵 𝐶 𝐴𝐵 = ((𝐵𝐴) ∨ (𝐵 ∩ (⊥‘𝐴)))))
41, 3bitrd 282 . . . . . . . . . 10 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵𝐵 = ((𝐵𝐴) ∨ (𝐵 ∩ (⊥‘𝐴)))))
54biimpa 480 . . . . . . . . 9 (((𝐴C𝐵C ) ∧ 𝐴 𝐶 𝐵) → 𝐵 = ((𝐵𝐴) ∨ (𝐵 ∩ (⊥‘𝐴))))
6 incom 4101 . . . . . . . . . 10 (𝐵𝐴) = (𝐴𝐵)
7 incom 4101 . . . . . . . . . 10 (𝐵 ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ 𝐵)
86, 7oveq12i 7203 . . . . . . . . 9 ((𝐵𝐴) ∨ (𝐵 ∩ (⊥‘𝐴))) = ((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵))
95, 8eqtrdi 2787 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝐴 𝐶 𝐵) → 𝐵 = ((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)))
1093adantl3 1170 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ 𝐴 𝐶 𝐵) → 𝐵 = ((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)))
1110adantrr 717 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → 𝐵 = ((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)))
12 cmcm 29649 . . . . . . . . . . 11 ((𝐴C𝐶C ) → (𝐴 𝐶 𝐶𝐶 𝐶 𝐴))
13 cmbr 29619 . . . . . . . . . . . 12 ((𝐶C𝐴C ) → (𝐶 𝐶 𝐴𝐶 = ((𝐶𝐴) ∨ (𝐶 ∩ (⊥‘𝐴)))))
1413ancoms 462 . . . . . . . . . . 11 ((𝐴C𝐶C ) → (𝐶 𝐶 𝐴𝐶 = ((𝐶𝐴) ∨ (𝐶 ∩ (⊥‘𝐴)))))
1512, 14bitrd 282 . . . . . . . . . 10 ((𝐴C𝐶C ) → (𝐴 𝐶 𝐶𝐶 = ((𝐶𝐴) ∨ (𝐶 ∩ (⊥‘𝐴)))))
1615biimpa 480 . . . . . . . . 9 (((𝐴C𝐶C ) ∧ 𝐴 𝐶 𝐶) → 𝐶 = ((𝐶𝐴) ∨ (𝐶 ∩ (⊥‘𝐴))))
17 incom 4101 . . . . . . . . . 10 (𝐶𝐴) = (𝐴𝐶)
18 incom 4101 . . . . . . . . . 10 (𝐶 ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ 𝐶)
1917, 18oveq12i 7203 . . . . . . . . 9 ((𝐶𝐴) ∨ (𝐶 ∩ (⊥‘𝐴))) = ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶))
2016, 19eqtrdi 2787 . . . . . . . 8 (((𝐴C𝐶C ) ∧ 𝐴 𝐶 𝐶) → 𝐶 = ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶)))
21203adantl2 1169 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ 𝐴 𝐶 𝐶) → 𝐶 = ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶)))
2221adantrl 716 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → 𝐶 = ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶)))
2311, 22oveq12d 7209 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐵 𝐶) = (((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)) ∨ ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶))))
24 chincl 29534 . . . . . . . . 9 ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )
25 choccl 29341 . . . . . . . . . 10 (𝐴C → (⊥‘𝐴) ∈ C )
26 chincl 29534 . . . . . . . . . 10 (((⊥‘𝐴) ∈ C𝐵C ) → ((⊥‘𝐴) ∩ 𝐵) ∈ C )
2725, 26sylan 583 . . . . . . . . 9 ((𝐴C𝐵C ) → ((⊥‘𝐴) ∩ 𝐵) ∈ C )
2824, 27jca 515 . . . . . . . 8 ((𝐴C𝐵C ) → ((𝐴𝐵) ∈ C ∧ ((⊥‘𝐴) ∩ 𝐵) ∈ C ))
29 chincl 29534 . . . . . . . . 9 ((𝐴C𝐶C ) → (𝐴𝐶) ∈ C )
30 chincl 29534 . . . . . . . . . 10 (((⊥‘𝐴) ∈ C𝐶C ) → ((⊥‘𝐴) ∩ 𝐶) ∈ C )
3125, 30sylan 583 . . . . . . . . 9 ((𝐴C𝐶C ) → ((⊥‘𝐴) ∩ 𝐶) ∈ C )
3229, 31jca 515 . . . . . . . 8 ((𝐴C𝐶C ) → ((𝐴𝐶) ∈ C ∧ ((⊥‘𝐴) ∩ 𝐶) ∈ C ))
33 chj4 29570 . . . . . . . 8 ((((𝐴𝐵) ∈ C ∧ ((⊥‘𝐴) ∩ 𝐵) ∈ C ) ∧ ((𝐴𝐶) ∈ C ∧ ((⊥‘𝐴) ∩ 𝐶) ∈ C )) → (((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)) ∨ ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶))) = (((𝐴𝐵) ∨ (𝐴𝐶)) ∨ (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶))))
3428, 32, 33syl2an 599 . . . . . . 7 (((𝐴C𝐵C ) ∧ (𝐴C𝐶C )) → (((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)) ∨ ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶))) = (((𝐴𝐵) ∨ (𝐴𝐶)) ∨ (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶))))
35343impdi 1352 . . . . . 6 ((𝐴C𝐵C𝐶C ) → (((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)) ∨ ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶))) = (((𝐴𝐵) ∨ (𝐴𝐶)) ∨ (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶))))
3635adantr 484 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐴𝐵) ∨ ((⊥‘𝐴) ∩ 𝐵)) ∨ ((𝐴𝐶) ∨ ((⊥‘𝐴) ∩ 𝐶))) = (((𝐴𝐵) ∨ (𝐴𝐶)) ∨ (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶))))
37 fh1 29653 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) = ((𝐴𝐵) ∨ (𝐴𝐶)))
38 incom 4101 . . . . . . 7 (𝐴 ∩ (𝐵 𝐶)) = ((𝐵 𝐶) ∩ 𝐴)
3937, 38eqtr3di 2786 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((𝐴𝐵) ∨ (𝐴𝐶)) = ((𝐵 𝐶) ∩ 𝐴))
40253anim1i 1154 . . . . . . . . 9 ((𝐴C𝐵C𝐶C ) → ((⊥‘𝐴) ∈ C𝐵C𝐶C ))
4140adantr 484 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((⊥‘𝐴) ∈ C𝐵C𝐶C ))
42 cmcm3 29650 . . . . . . . . . . 11 ((𝐴C𝐵C ) → (𝐴 𝐶 𝐵 ↔ (⊥‘𝐴) 𝐶 𝐵))
43423adant3 1134 . . . . . . . . . 10 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐶 𝐵 ↔ (⊥‘𝐴) 𝐶 𝐵))
44 cmcm3 29650 . . . . . . . . . . 11 ((𝐴C𝐶C ) → (𝐴 𝐶 𝐶 ↔ (⊥‘𝐴) 𝐶 𝐶))
45443adant2 1133 . . . . . . . . . 10 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐶 𝐶 ↔ (⊥‘𝐴) 𝐶 𝐶))
4643, 45anbi12d 634 . . . . . . . . 9 ((𝐴C𝐵C𝐶C ) → ((𝐴 𝐶 𝐵𝐴 𝐶 𝐶) ↔ ((⊥‘𝐴) 𝐶 𝐵 ∧ (⊥‘𝐴) 𝐶 𝐶)))
4746biimpa 480 . . . . . . . 8 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((⊥‘𝐴) 𝐶 𝐵 ∧ (⊥‘𝐴) 𝐶 𝐶))
48 fh1 29653 . . . . . . . 8 ((((⊥‘𝐴) ∈ C𝐵C𝐶C ) ∧ ((⊥‘𝐴) 𝐶 𝐵 ∧ (⊥‘𝐴) 𝐶 𝐶)) → ((⊥‘𝐴) ∩ (𝐵 𝐶)) = (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶)))
4941, 47, 48syl2anc 587 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → ((⊥‘𝐴) ∩ (𝐵 𝐶)) = (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶)))
50 incom 4101 . . . . . . 7 ((⊥‘𝐴) ∩ (𝐵 𝐶)) = ((𝐵 𝐶) ∩ (⊥‘𝐴))
5149, 50eqtr3di 2786 . . . . . 6 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶)) = ((𝐵 𝐶) ∩ (⊥‘𝐴)))
5239, 51oveq12d 7209 . . . . 5 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (((𝐴𝐵) ∨ (𝐴𝐶)) ∨ (((⊥‘𝐴) ∩ 𝐵) ∨ ((⊥‘𝐴) ∩ 𝐶))) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴))))
5323, 36, 523eqtrd 2775 . . . 4 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴))))
5453ex 416 . . 3 ((𝐴C𝐵C𝐶C ) → ((𝐴 𝐶 𝐵𝐴 𝐶 𝐶) → (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴)))))
55 chjcl 29392 . . . . 5 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
56 cmcm 29649 . . . . . 6 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 𝐶 (𝐵 𝐶) ↔ (𝐵 𝐶) 𝐶 𝐴))
57 cmbr 29619 . . . . . . 7 (((𝐵 𝐶) ∈ C𝐴C ) → ((𝐵 𝐶) 𝐶 𝐴 ↔ (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴)))))
5857ancoms 462 . . . . . 6 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → ((𝐵 𝐶) 𝐶 𝐴 ↔ (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴)))))
5956, 58bitrd 282 . . . . 5 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 𝐶 (𝐵 𝐶) ↔ (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴)))))
6055, 59sylan2 596 . . . 4 ((𝐴C ∧ (𝐵C𝐶C )) → (𝐴 𝐶 (𝐵 𝐶) ↔ (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴)))))
61603impb 1117 . . 3 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐶 (𝐵 𝐶) ↔ (𝐵 𝐶) = (((𝐵 𝐶) ∩ 𝐴) ∨ ((𝐵 𝐶) ∩ (⊥‘𝐴)))))
6254, 61sylibrd 262 . 2 ((𝐴C𝐵C𝐶C ) → ((𝐴 𝐶 𝐵𝐴 𝐶 𝐶) → 𝐴 𝐶 (𝐵 𝐶)))
6362imp 410 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝐶 𝐵𝐴 𝐶 𝐶)) → 𝐴 𝐶 (𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  cin 3852   class class class wbr 5039  cfv 6358  (class class class)co 7191   C cch 28964  cort 28965   chj 28968   𝐶 ccm 28971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cc 10014  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774  ax-hilex 29034  ax-hfvadd 29035  ax-hvcom 29036  ax-hvass 29037  ax-hv0cl 29038  ax-hvaddid 29039  ax-hfvmul 29040  ax-hvmulid 29041  ax-hvmulass 29042  ax-hvdistr1 29043  ax-hvdistr2 29044  ax-hvmul0 29045  ax-hfi 29114  ax-his1 29117  ax-his2 29118  ax-his3 29119  ax-his4 29120  ax-hcompl 29237
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-oadd 8184  df-omul 8185  df-er 8369  df-map 8488  df-pm 8489  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-acn 9523  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ioo 12904  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-fl 13332  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-rlim 15015  df-sum 15215  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-hom 16773  df-cco 16774  df-rest 16881  df-topn 16882  df-0g 16900  df-gsum 16901  df-topgen 16902  df-pt 16903  df-prds 16906  df-xrs 16961  df-qtop 16966  df-imas 16967  df-xps 16969  df-mre 17043  df-mrc 17044  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-mulg 18443  df-cntz 18665  df-cmn 19126  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-fbas 20314  df-fg 20315  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-cn 22078  df-cnp 22079  df-lm 22080  df-haus 22166  df-tx 22413  df-hmeo 22606  df-fil 22697  df-fm 22789  df-flim 22790  df-flf 22791  df-xms 23172  df-ms 23173  df-tms 23174  df-cfil 24106  df-cau 24107  df-cmet 24108  df-grpo 28528  df-gid 28529  df-ginv 28530  df-gdiv 28531  df-ablo 28580  df-vc 28594  df-nv 28627  df-va 28630  df-ba 28631  df-sm 28632  df-0v 28633  df-vs 28634  df-nmcv 28635  df-ims 28636  df-dip 28736  df-ssp 28757  df-ph 28848  df-cbn 28898  df-hnorm 29003  df-hba 29004  df-hvsub 29006  df-hlim 29007  df-hcau 29008  df-sh 29242  df-ch 29256  df-oc 29287  df-ch0 29288  df-shs 29343  df-chj 29345  df-cm 29618
This theorem is referenced by:  cm2ji  29660
  Copyright terms: Public domain W3C validator