MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnnegz Structured version   Visualization version   GIF version

Theorem nnnegz 12560
Description: The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002.)
Assertion
Ref Expression
nnnegz (𝑁 ∈ ℕ → -𝑁 ∈ ℤ)

Proof of Theorem nnnegz
StepHypRef Expression
1 nnre 12218 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
21renegcld 11640 . 2 (𝑁 ∈ ℕ → -𝑁 ∈ ℝ)
3 nncn 12219 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
4 negneg 11509 . . . . . 6 (𝑁 ∈ ℂ → --𝑁 = 𝑁)
54eleq1d 2810 . . . . 5 (𝑁 ∈ ℂ → (--𝑁 ∈ ℕ ↔ 𝑁 ∈ ℕ))
65biimprd 247 . . . 4 (𝑁 ∈ ℂ → (𝑁 ∈ ℕ → --𝑁 ∈ ℕ))
73, 6mpcom 38 . . 3 (𝑁 ∈ ℕ → --𝑁 ∈ ℕ)
873mix3d 1335 . 2 (𝑁 ∈ ℕ → (-𝑁 = 0 ∨ -𝑁 ∈ ℕ ∨ --𝑁 ∈ ℕ))
9 elz 12559 . 2 (-𝑁 ∈ ℤ ↔ (-𝑁 ∈ ℝ ∧ (-𝑁 = 0 ∨ -𝑁 ∈ ℕ ∨ --𝑁 ∈ ℕ)))
102, 8, 9sylanbrc 582 1 (𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1083   = wceq 1533  wcel 2098  cc 11105  cr 11106  0cc0 11107  -cneg 11444  cn 12211  cz 12557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-ltxr 11252  df-sub 11445  df-neg 11446  df-nn 12212  df-z 12558
This theorem is referenced by:  znegcl  12596  neg1z  12597  zeo  12647  btwnz  12664  uzwo3  12926  expneg  14036  expaddzlem  14072  mulgnegnn  19007  mulgneg2  19031  knoppndvlem18  35906  jm2.19lem1  42280  hoicvr  45810  proththd  46828
  Copyright terms: Public domain W3C validator