MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnlng3 Structured version   Visualization version   GIF version

Theorem btwnlng3 26980
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
btwnlng1.p 𝑃 = (Base‘𝐺)
btwnlng1.i 𝐼 = (Itv‘𝐺)
btwnlng1.l 𝐿 = (LineG‘𝐺)
btwnlng1.g (𝜑𝐺 ∈ TarskiG)
btwnlng1.x (𝜑𝑋𝑃)
btwnlng1.y (𝜑𝑌𝑃)
btwnlng1.z (𝜑𝑍𝑃)
btwnlng1.d (𝜑𝑋𝑌)
btwnlng3.1 (𝜑𝑌 ∈ (𝑋𝐼𝑍))
Assertion
Ref Expression
btwnlng3 (𝜑𝑍 ∈ (𝑋𝐿𝑌))

Proof of Theorem btwnlng3
StepHypRef Expression
1 btwnlng3.1 . . 3 (𝜑𝑌 ∈ (𝑋𝐼𝑍))
213mix3d 1337 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
3 btwnlng1.p . . 3 𝑃 = (Base‘𝐺)
4 btwnlng1.l . . 3 𝐿 = (LineG‘𝐺)
5 btwnlng1.i . . 3 𝐼 = (Itv‘𝐺)
6 btwnlng1.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 btwnlng1.x . . 3 (𝜑𝑋𝑃)
8 btwnlng1.y . . 3 (𝜑𝑌𝑃)
9 btwnlng1.d . . 3 (𝜑𝑋𝑌)
10 btwnlng1.z . . 3 (𝜑𝑍𝑃)
113, 4, 5, 6, 7, 8, 9, 10tgellng 26912 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
122, 11mpbird 256 1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085   = wceq 1542  wcel 2110  wne 2945  cfv 6432  (class class class)co 7271  Basecbs 16910  TarskiGcstrkg 26786  Itvcitv 26792  LineGclng 26793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-iota 6390  df-fun 6434  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-trkg 26812
This theorem is referenced by:  midexlem  27051  footexALT  27077  footexlem1  27078  footexlem2  27079  mideulem2  27093  opphllem1  27106  outpasch  27114  colhp  27129
  Copyright terms: Public domain W3C validator