MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnlng3 Structured version   Visualization version   GIF version

Theorem btwnlng3 28647
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
btwnlng1.p 𝑃 = (Base‘𝐺)
btwnlng1.i 𝐼 = (Itv‘𝐺)
btwnlng1.l 𝐿 = (LineG‘𝐺)
btwnlng1.g (𝜑𝐺 ∈ TarskiG)
btwnlng1.x (𝜑𝑋𝑃)
btwnlng1.y (𝜑𝑌𝑃)
btwnlng1.z (𝜑𝑍𝑃)
btwnlng1.d (𝜑𝑋𝑌)
btwnlng3.1 (𝜑𝑌 ∈ (𝑋𝐼𝑍))
Assertion
Ref Expression
btwnlng3 (𝜑𝑍 ∈ (𝑋𝐿𝑌))

Proof of Theorem btwnlng3
StepHypRef Expression
1 btwnlng3.1 . . 3 (𝜑𝑌 ∈ (𝑋𝐼𝑍))
213mix3d 1338 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
3 btwnlng1.p . . 3 𝑃 = (Base‘𝐺)
4 btwnlng1.l . . 3 𝐿 = (LineG‘𝐺)
5 btwnlng1.i . . 3 𝐼 = (Itv‘𝐺)
6 btwnlng1.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 btwnlng1.x . . 3 (𝜑𝑋𝑃)
8 btwnlng1.y . . 3 (𝜑𝑌𝑃)
9 btwnlng1.d . . 3 (𝜑𝑋𝑌)
10 btwnlng1.z . . 3 (𝜑𝑍𝑃)
113, 4, 5, 6, 7, 8, 9, 10tgellng 28579 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
122, 11mpbird 257 1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1086   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  Basecbs 17258  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-trkg 28479
This theorem is referenced by:  midexlem  28718  footexALT  28744  footexlem1  28745  footexlem2  28746  mideulem2  28760  opphllem1  28773  outpasch  28781  colhp  28796
  Copyright terms: Public domain W3C validator