MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnlng3 Structured version   Visualization version   GIF version

Theorem btwnlng3 26963
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
btwnlng1.p 𝑃 = (Base‘𝐺)
btwnlng1.i 𝐼 = (Itv‘𝐺)
btwnlng1.l 𝐿 = (LineG‘𝐺)
btwnlng1.g (𝜑𝐺 ∈ TarskiG)
btwnlng1.x (𝜑𝑋𝑃)
btwnlng1.y (𝜑𝑌𝑃)
btwnlng1.z (𝜑𝑍𝑃)
btwnlng1.d (𝜑𝑋𝑌)
btwnlng3.1 (𝜑𝑌 ∈ (𝑋𝐼𝑍))
Assertion
Ref Expression
btwnlng3 (𝜑𝑍 ∈ (𝑋𝐿𝑌))

Proof of Theorem btwnlng3
StepHypRef Expression
1 btwnlng3.1 . . 3 (𝜑𝑌 ∈ (𝑋𝐼𝑍))
213mix3d 1336 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
3 btwnlng1.p . . 3 𝑃 = (Base‘𝐺)
4 btwnlng1.l . . 3 𝐿 = (LineG‘𝐺)
5 btwnlng1.i . . 3 𝐼 = (Itv‘𝐺)
6 btwnlng1.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 btwnlng1.x . . 3 (𝜑𝑋𝑃)
8 btwnlng1.y . . 3 (𝜑𝑌𝑃)
9 btwnlng1.d . . 3 (𝜑𝑋𝑌)
10 btwnlng1.z . . 3 (𝜑𝑍𝑃)
113, 4, 5, 6, 7, 8, 9, 10tgellng 26895 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
122, 11mpbird 256 1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1084   = wceq 1541  wcel 2109  wne 2944  cfv 6430  (class class class)co 7268  Basecbs 16893  TarskiGcstrkg 26769  Itvcitv 26775  LineGclng 26776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-trkg 26795
This theorem is referenced by:  midexlem  27034  footexALT  27060  footexlem1  27061  footexlem2  27062  mideulem2  27076  opphllem1  27089  outpasch  27097  colhp  27112
  Copyright terms: Public domain W3C validator