Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > btwnlng3 | Structured version Visualization version GIF version |
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
Ref | Expression |
---|---|
btwnlng1.p | ⊢ 𝑃 = (Base‘𝐺) |
btwnlng1.i | ⊢ 𝐼 = (Itv‘𝐺) |
btwnlng1.l | ⊢ 𝐿 = (LineG‘𝐺) |
btwnlng1.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
btwnlng1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
btwnlng1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
btwnlng1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
btwnlng1.d | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
btwnlng3.1 | ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) |
Ref | Expression |
---|---|
btwnlng3 | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | btwnlng3.1 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) | |
2 | 1 | 3mix3d 1336 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
3 | btwnlng1.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
4 | btwnlng1.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | btwnlng1.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | btwnlng1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | btwnlng1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
8 | btwnlng1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
9 | btwnlng1.d | . . 3 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
10 | btwnlng1.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
11 | 3, 4, 5, 6, 7, 8, 9, 10 | tgellng 26895 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
12 | 2, 11 | mpbird 256 | 1 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1084 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 TarskiGcstrkg 26769 Itvcitv 26775 LineGclng 26776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-trkg 26795 |
This theorem is referenced by: midexlem 27034 footexALT 27060 footexlem1 27061 footexlem2 27062 mideulem2 27076 opphllem1 27089 outpasch 27097 colhp 27112 |
Copyright terms: Public domain | W3C validator |