Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > btwnlng3 | Structured version Visualization version GIF version |
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
Ref | Expression |
---|---|
btwnlng1.p | ⊢ 𝑃 = (Base‘𝐺) |
btwnlng1.i | ⊢ 𝐼 = (Itv‘𝐺) |
btwnlng1.l | ⊢ 𝐿 = (LineG‘𝐺) |
btwnlng1.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
btwnlng1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
btwnlng1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
btwnlng1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
btwnlng1.d | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
btwnlng3.1 | ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) |
Ref | Expression |
---|---|
btwnlng3 | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | btwnlng3.1 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) | |
2 | 1 | 3mix3d 1337 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
3 | btwnlng1.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
4 | btwnlng1.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | btwnlng1.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | btwnlng1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | btwnlng1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
8 | btwnlng1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
9 | btwnlng1.d | . . 3 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
10 | btwnlng1.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
11 | 3, 4, 5, 6, 7, 8, 9, 10 | tgellng 26912 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
12 | 2, 11 | mpbird 256 | 1 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐿𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 TarskiGcstrkg 26786 Itvcitv 26792 LineGclng 26793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-trkg 26812 |
This theorem is referenced by: midexlem 27051 footexALT 27077 footexlem1 27078 footexlem2 27079 mideulem2 27093 opphllem1 27106 outpasch 27114 colhp 27129 |
Copyright terms: Public domain | W3C validator |