| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > btwncolg3 | Structured version Visualization version GIF version | ||
| Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
| Ref | Expression |
|---|---|
| tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| btwncolg3.z | ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) |
| Ref | Expression |
|---|---|
| btwncolg3 | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | btwncolg3.z | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) | |
| 2 | 1 | 3mix3d 1339 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
| 3 | tglngval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | tglngval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 6 | tglngval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | tglngval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 8 | tglngval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 9 | tgcolg.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 10 | 3, 4, 5, 6, 7, 8, 9 | tgcolg 28499 | . 2 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| 11 | 2, 10 | mpbird 257 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 TarskiGcstrkg 28372 Itvcitv 28378 LineGclng 28379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-trkgc 28393 df-trkgcb 28395 df-trkg 28398 |
| This theorem is referenced by: tgdim01ln 28509 lnxfr 28511 tgidinside 28516 tgbtwnconn1lem3 28519 tgbtwnconnln3 28523 tgbtwnconnln1 28525 tgbtwnconnln2 28526 legov 28530 legov2 28531 legtrd 28534 tglineeltr 28576 krippenlem 28635 midexlem 28637 footexALT 28663 footexlem2 28665 mideulem2 28679 hlpasch 28701 hypcgrlem1 28744 cgracol 28773 |
| Copyright terms: Public domain | W3C validator |