![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > btwncolg3 | Structured version Visualization version GIF version |
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
Ref | Expression |
---|---|
tglngval.p | β’ π = (BaseβπΊ) |
tglngval.l | β’ πΏ = (LineGβπΊ) |
tglngval.i | β’ πΌ = (ItvβπΊ) |
tglngval.g | β’ (π β πΊ β TarskiG) |
tglngval.x | β’ (π β π β π) |
tglngval.y | β’ (π β π β π) |
tgcolg.z | β’ (π β π β π) |
btwncolg3.z | β’ (π β π β (ππΌπ)) |
Ref | Expression |
---|---|
btwncolg3 | β’ (π β (π β (ππΏπ) β¨ π = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | btwncolg3.z | . . 3 β’ (π β π β (ππΌπ)) | |
2 | 1 | 3mix3d 1336 | . 2 β’ (π β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ))) |
3 | tglngval.p | . . 3 β’ π = (BaseβπΊ) | |
4 | tglngval.l | . . 3 β’ πΏ = (LineGβπΊ) | |
5 | tglngval.i | . . 3 β’ πΌ = (ItvβπΊ) | |
6 | tglngval.g | . . 3 β’ (π β πΊ β TarskiG) | |
7 | tglngval.x | . . 3 β’ (π β π β π) | |
8 | tglngval.y | . . 3 β’ (π β π β π) | |
9 | tgcolg.z | . . 3 β’ (π β π β π) | |
10 | 3, 4, 5, 6, 7, 8, 9 | tgcolg 28072 | . 2 β’ (π β ((π β (ππΏπ) β¨ π = π) β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ)))) |
11 | 2, 10 | mpbird 256 | 1 β’ (π β (π β (ππΏπ) β¨ π = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ wo 843 β¨ w3o 1084 = wceq 1539 β wcel 2104 βcfv 6542 (class class class)co 7411 Basecbs 17148 TarskiGcstrkg 27945 Itvcitv 27951 LineGclng 27952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-trkgc 27966 df-trkgcb 27968 df-trkg 27971 |
This theorem is referenced by: tgdim01ln 28082 lnxfr 28084 tgidinside 28089 tgbtwnconn1lem3 28092 tgbtwnconnln3 28096 tgbtwnconnln1 28098 tgbtwnconnln2 28099 legov 28103 legov2 28104 legtrd 28107 tglineeltr 28149 krippenlem 28208 midexlem 28210 footexALT 28236 footexlem2 28238 mideulem2 28252 hlpasch 28274 hypcgrlem1 28317 cgracol 28346 |
Copyright terms: Public domain | W3C validator |