![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > btwncolg3 | Structured version Visualization version GIF version |
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
btwncolg3.z | ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) |
Ref | Expression |
---|---|
btwncolg3 | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | btwncolg3.z | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) | |
2 | 1 | 3mix3d 1338 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
3 | tglngval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
4 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | tglngval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | tglngval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | tglngval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
8 | tglngval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
9 | tgcolg.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
10 | 3, 4, 5, 6, 7, 8, 9 | tgcolg 28580 | . 2 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
11 | 2, 10 | mpbird 257 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 ∨ w3o 1086 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 TarskiGcstrkg 28453 Itvcitv 28459 LineGclng 28460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-trkgc 28474 df-trkgcb 28476 df-trkg 28479 |
This theorem is referenced by: tgdim01ln 28590 lnxfr 28592 tgidinside 28597 tgbtwnconn1lem3 28600 tgbtwnconnln3 28604 tgbtwnconnln1 28606 tgbtwnconnln2 28607 legov 28611 legov2 28612 legtrd 28615 tglineeltr 28657 krippenlem 28716 midexlem 28718 footexALT 28744 footexlem2 28746 mideulem2 28760 hlpasch 28782 hypcgrlem1 28825 cgracol 28854 |
Copyright terms: Public domain | W3C validator |