MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwncolg3 Structured version   Visualization version   GIF version

Theorem btwncolg3 28484
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
btwncolg3.z (𝜑𝑌 ∈ (𝑋𝐼𝑍))
Assertion
Ref Expression
btwncolg3 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))

Proof of Theorem btwncolg3
StepHypRef Expression
1 btwncolg3.z . . 3 (𝜑𝑌 ∈ (𝑋𝐼𝑍))
213mix3d 1339 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
3 tglngval.p . . 3 𝑃 = (Base‘𝐺)
4 tglngval.l . . 3 𝐿 = (LineG‘𝐺)
5 tglngval.i . . 3 𝐼 = (Itv‘𝐺)
6 tglngval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 tglngval.x . . 3 (𝜑𝑋𝑃)
8 tglngval.y . . 3 (𝜑𝑌𝑃)
9 tgcolg.z . . 3 (𝜑𝑍𝑃)
103, 4, 5, 6, 7, 8, 9tgcolg 28481 . 2 (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
112, 10mpbird 257 1 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  w3o 1085   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  TarskiGcstrkg 28354  Itvcitv 28360  LineGclng 28361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-trkgc 28375  df-trkgcb 28377  df-trkg 28380
This theorem is referenced by:  tgdim01ln  28491  lnxfr  28493  tgidinside  28498  tgbtwnconn1lem3  28501  tgbtwnconnln3  28505  tgbtwnconnln1  28507  tgbtwnconnln2  28508  legov  28512  legov2  28513  legtrd  28516  tglineeltr  28558  krippenlem  28617  midexlem  28619  footexALT  28645  footexlem2  28647  mideulem2  28661  hlpasch  28683  hypcgrlem1  28726  cgracol  28755
  Copyright terms: Public domain W3C validator