| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > btwncolg3 | Structured version Visualization version GIF version | ||
| Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
| Ref | Expression |
|---|---|
| tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| btwncolg3.z | ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) |
| Ref | Expression |
|---|---|
| btwncolg3 | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | btwncolg3.z | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) | |
| 2 | 1 | 3mix3d 1339 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
| 3 | tglngval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | tglngval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 6 | tglngval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | tglngval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 8 | tglngval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 9 | tgcolg.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 10 | 3, 4, 5, 6, 7, 8, 9 | tgcolg 28532 | . 2 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| 11 | 2, 10 | mpbird 257 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∨ w3o 1085 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 TarskiGcstrkg 28405 Itvcitv 28411 LineGclng 28412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-trkgc 28426 df-trkgcb 28428 df-trkg 28431 |
| This theorem is referenced by: tgdim01ln 28542 lnxfr 28544 tgidinside 28549 tgbtwnconn1lem3 28552 tgbtwnconnln3 28556 tgbtwnconnln1 28558 tgbtwnconnln2 28559 legov 28563 legov2 28564 legtrd 28567 tglineeltr 28609 krippenlem 28668 midexlem 28670 footexALT 28696 footexlem2 28698 mideulem2 28712 hlpasch 28734 hypcgrlem1 28777 cgracol 28806 |
| Copyright terms: Public domain | W3C validator |