Step | Hyp | Ref
| Expression |
1 | | eleq2 2815 |
. . . . . 6
⊢ (𝐶 = ∅ → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ ∅)) |
2 | | noel 4331 |
. . . . . . 7
⊢ ¬
𝐴 ∈
∅ |
3 | 2 | pm2.21i 119 |
. . . . . 6
⊢ (𝐴 ∈ ∅ → (𝐴 ·o 𝐵) ∈ 𝐶) |
4 | 1, 3 | biimtrdi 252 |
. . . . 5
⊢ (𝐶 = ∅ → (𝐴 ∈ 𝐶 → (𝐴 ·o 𝐵) ∈ 𝐶)) |
5 | 4 | com12 32 |
. . . 4
⊢ (𝐴 ∈ 𝐶 → (𝐶 = ∅ → (𝐴 ·o 𝐵) ∈ 𝐶)) |
6 | 5 | adantr 479 |
. . 3
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐶 = ∅ → (𝐴 ·o 𝐵) ∈ 𝐶)) |
7 | | simpl 481 |
. . . . . . . 8
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → 𝐶 = (ω ↑o (ω
↑o 𝐷))) |
8 | | omelon 9680 |
. . . . . . . . . . . 12
⊢ ω
∈ On |
9 | | oecl 8557 |
. . . . . . . . . . . 12
⊢ ((ω
∈ On ∧ 𝐷 ∈
On) → (ω ↑o 𝐷) ∈ On) |
10 | 8, 9 | mpan 688 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ On → (ω
↑o 𝐷)
∈ On) |
11 | 10, 8 | jctil 518 |
. . . . . . . . . 10
⊢ (𝐷 ∈ On → (ω
∈ On ∧ (ω ↑o 𝐷) ∈ On)) |
12 | | oecl 8557 |
. . . . . . . . . 10
⊢ ((ω
∈ On ∧ (ω ↑o 𝐷) ∈ On) → (ω
↑o (ω ↑o 𝐷)) ∈ On) |
13 | 11, 12 | syl 17 |
. . . . . . . . 9
⊢ (𝐷 ∈ On → (ω
↑o (ω ↑o 𝐷)) ∈ On) |
14 | 13 | adantl 480 |
. . . . . . . 8
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → (ω
↑o (ω ↑o 𝐷)) ∈ On) |
15 | 7, 14 | eqeltrd 2826 |
. . . . . . 7
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → 𝐶 ∈ On) |
16 | | simpll 765 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
𝐴 ∈ 𝐶) |
17 | | onelon 6391 |
. . . . . . 7
⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ 𝐶) → 𝐴 ∈ On) |
18 | 15, 16, 17 | syl2an2 684 |
. . . . . 6
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
𝐴 ∈
On) |
19 | | on0eqel 6490 |
. . . . . 6
⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∅ ∈
𝐴)) |
20 | 18, 19 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
(𝐴 = ∅ ∨ ∅
∈ 𝐴)) |
21 | | oveq1 7421 |
. . . . . . . . 9
⊢ (𝐴 = ∅ → (𝐴 ·o 𝐵) = (∅
·o 𝐵)) |
22 | | simpr 483 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → 𝐵 ∈ 𝐶) |
23 | 22 | adantr 479 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
𝐵 ∈ 𝐶) |
24 | | onelon 6391 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ On ∧ 𝐵 ∈ 𝐶) → 𝐵 ∈ On) |
25 | 15, 23, 24 | syl2an2 684 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
𝐵 ∈
On) |
26 | | om0r 8559 |
. . . . . . . . . 10
⊢ (𝐵 ∈ On → (∅
·o 𝐵) =
∅) |
27 | 25, 26 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
(∅ ·o 𝐵) = ∅) |
28 | 21, 27 | sylan9eqr 2788 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) ∧
𝐴 = ∅) → (𝐴 ·o 𝐵) = ∅) |
29 | | peano1 7890 |
. . . . . . . . . . . . 13
⊢ ∅
∈ ω |
30 | | oen0 8606 |
. . . . . . . . . . . . 13
⊢
(((ω ∈ On ∧ (ω ↑o 𝐷) ∈ On) ∧ ∅ ∈ ω)
→ ∅ ∈ (ω ↑o (ω ↑o
𝐷))) |
31 | 11, 29, 30 | sylancl 584 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ On → ∅ ∈
(ω ↑o (ω ↑o 𝐷))) |
32 | 31 | adantl 480 |
. . . . . . . . . . 11
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → ∅ ∈ (ω
↑o (ω ↑o 𝐷))) |
33 | 32, 7 | eleqtrrd 2829 |
. . . . . . . . . 10
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → ∅ ∈ 𝐶) |
34 | 33 | adantl 480 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
∅ ∈ 𝐶) |
35 | 34 | adantr 479 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) ∧
𝐴 = ∅) → ∅
∈ 𝐶) |
36 | 28, 35 | eqeltrd 2826 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) ∧
𝐴 = ∅) → (𝐴 ·o 𝐵) ∈ 𝐶) |
37 | 36 | ex 411 |
. . . . . 6
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
(𝐴 = ∅ → (𝐴 ·o 𝐵) ∈ 𝐶)) |
38 | | simp1 1133 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴) → 𝐴 ∈ 𝐶) |
39 | 15 | adantl 480 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
𝐶 ∈
On) |
40 | | simpr 483 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) ∧
𝐶 ∈ On) → 𝐶 ∈ On) |
41 | 38 | ad2antrr 724 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) ∧
𝐶 ∈ On) → 𝐴 ∈ 𝐶) |
42 | 40, 41, 17 | syl2anc 582 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) ∧
𝐶 ∈ On) → 𝐴 ∈ On) |
43 | 42 | ex 411 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
(𝐶 ∈ On → 𝐴 ∈ On)) |
44 | 39, 43 | jcai 515 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
(𝐶 ∈ On ∧ 𝐴 ∈ On)) |
45 | | simpl3 1190 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
∅ ∈ 𝐴) |
46 | | simpl2 1189 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
𝐵 ∈ 𝐶) |
47 | | omordi 8586 |
. . . . . . . . . . . . . 14
⊢ (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈
𝐴) → (𝐵 ∈ 𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))) |
48 | 47 | imp 405 |
. . . . . . . . . . . . 13
⊢ ((((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈
𝐴) ∧ 𝐵 ∈ 𝐶) → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶)) |
49 | 44, 45, 46, 48 | syl21anc 836 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
(𝐴 ·o
𝐵) ∈ (𝐴 ·o 𝐶)) |
50 | | oveq1 7421 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐴 → (𝑥 ·o 𝐶) = (𝐴 ·o 𝐶)) |
51 | 50 | eliuni 5000 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝐶 ∧ (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶)) → (𝐴 ·o 𝐵) ∈ ∪
𝑥 ∈ 𝐶 (𝑥 ·o 𝐶)) |
52 | 38, 49, 51 | syl2an2r 683 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
(𝐴 ·o
𝐵) ∈ ∪ 𝑥 ∈ 𝐶 (𝑥 ·o 𝐶)) |
53 | | simpr 483 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) ∧ 𝑥 = ∅) → 𝑥 = ∅) |
54 | 53 | oveq1d 7429 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) ∧ 𝑥 = ∅) → (𝑥 ·o 𝐶) = (∅ ·o 𝐶)) |
55 | | om0r 8559 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐶 ∈ On → (∅
·o 𝐶) =
∅) |
56 | 15, 55 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → (∅
·o 𝐶) =
∅) |
57 | 56 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) ∧ 𝑥 = ∅) → (∅
·o 𝐶) =
∅) |
58 | 54, 57 | eqtrd 2766 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) ∧ 𝑥 = ∅) → (𝑥 ·o 𝐶) = ∅) |
59 | | 0ss 4395 |
. . . . . . . . . . . . . . . . 17
⊢ ∅
⊆ 𝐶 |
60 | 59 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) ∧ 𝑥 = ∅) → ∅ ⊆ 𝐶) |
61 | 58, 60 | eqsstrd 4018 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) ∧ 𝑥 = ∅) → (𝑥 ·o 𝐶) ⊆ 𝐶) |
62 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ 𝐶 ∧ ∅ ∈ 𝑥) → (𝑥 ∈ 𝐶 ∧ ∅ ∈ 𝑥)) |
63 | 62 | adantll 712 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) ∧ ∅ ∈ 𝑥) → (𝑥 ∈ 𝐶 ∧ ∅ ∈ 𝑥)) |
64 | | simpll 765 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) ∧ ∅ ∈ 𝑥) → (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈
On)) |
65 | 64 | 3mix3d 1335 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) ∧ ∅ ∈ 𝑥) → (𝐶 = ∅ ∨ 𝐶 = 2o ∨ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈
On))) |
66 | | omabs2 43033 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 𝐶 ∧ ∅ ∈ 𝑥) ∧ (𝐶 = ∅ ∨ 𝐶 = 2o ∨ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On))) →
(𝑥 ·o
𝐶) = 𝐶) |
67 | 63, 65, 66 | syl2anc 582 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) ∧ ∅ ∈ 𝑥) → (𝑥 ·o 𝐶) = 𝐶) |
68 | | ssidd 4003 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) ∧ ∅ ∈ 𝑥) → 𝐶 ⊆ 𝐶) |
69 | 67, 68 | eqsstrd 4018 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) ∧ ∅ ∈ 𝑥) → (𝑥 ·o 𝐶) ⊆ 𝐶) |
70 | | onelon 6391 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ On ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ On) |
71 | 15, 70 | sylan 578 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ On) |
72 | | on0eqel 6490 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ On → (𝑥 = ∅ ∨ ∅ ∈
𝑥)) |
73 | 71, 72 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) → (𝑥 = ∅ ∨ ∅ ∈ 𝑥)) |
74 | 61, 69, 73 | mpjaodan 956 |
. . . . . . . . . . . . . 14
⊢ (((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) → (𝑥 ·o 𝐶) ⊆ 𝐶) |
75 | 74 | iunssd 5051 |
. . . . . . . . . . . . 13
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → ∪ 𝑥 ∈ 𝐶 (𝑥 ·o 𝐶) ⊆ 𝐶) |
76 | | simpr 483 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → 𝐷 ∈ On) |
77 | 76, 8 | jctil 518 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → (ω ∈ On ∧
𝐷 ∈
On)) |
78 | | oen0 8606 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ω ∈ On ∧ 𝐷 ∈ On) ∧ ∅ ∈ ω)
→ ∅ ∈ (ω ↑o 𝐷)) |
79 | 77, 29, 78 | sylancl 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → ∅ ∈ (ω
↑o 𝐷)) |
80 | 77, 9 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → (ω
↑o 𝐷)
∈ On) |
81 | | 1onn 8660 |
. . . . . . . . . . . . . . . . . . 19
⊢
1o ∈ ω |
82 | | ondif2 8522 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ω
∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o
∈ ω)) |
83 | 8, 81, 82 | mpbir2an 709 |
. . . . . . . . . . . . . . . . . 18
⊢ ω
∈ (On ∖ 2o) |
84 | | oeordi 8607 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ω ↑o 𝐷) ∈ On ∧ ω ∈ (On ∖
2o)) → (∅ ∈ (ω ↑o 𝐷) → (ω
↑o ∅) ∈ (ω ↑o (ω
↑o 𝐷)))) |
85 | 80, 83, 84 | sylancl 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → (∅ ∈ (ω
↑o 𝐷)
→ (ω ↑o ∅) ∈ (ω ↑o
(ω ↑o 𝐷)))) |
86 | 79, 85 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → (ω
↑o ∅) ∈ (ω ↑o (ω
↑o 𝐷))) |
87 | | oe0 8542 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ω
∈ On → (ω ↑o ∅) =
1o) |
88 | 8, 87 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ (ω
↑o ∅) = 1o |
89 | 88 | eqcomi 2735 |
. . . . . . . . . . . . . . . . 17
⊢
1o = (ω ↑o ∅) |
90 | 89 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → 1o = (ω
↑o ∅)) |
91 | 86, 90, 7 | 3eltr4d 2841 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → 1o ∈
𝐶) |
92 | | oveq1 7421 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 1o → (𝑥 ·o 𝐶) = (1o
·o 𝐶)) |
93 | | om1r 8563 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐶 ∈ On → (1o
·o 𝐶) =
𝐶) |
94 | 15, 93 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → (1o
·o 𝐶) =
𝐶) |
95 | 92, 94 | sylan9eqr 2788 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) ∧ 𝑥 = 1o) → (𝑥 ·o 𝐶) = 𝐶) |
96 | 95 | sseq2d 4012 |
. . . . . . . . . . . . . . 15
⊢ (((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) ∧ 𝑥 = 1o) → (𝐶 ⊆ (𝑥 ·o 𝐶) ↔ 𝐶 ⊆ 𝐶)) |
97 | | ssidd 4003 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → 𝐶 ⊆ 𝐶) |
98 | 91, 96, 97 | rspcedvd 3610 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → ∃𝑥 ∈ 𝐶 𝐶 ⊆ (𝑥 ·o 𝐶)) |
99 | | ssiun 5047 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥 ∈
𝐶 𝐶 ⊆ (𝑥 ·o 𝐶) → 𝐶 ⊆ ∪
𝑥 ∈ 𝐶 (𝑥 ·o 𝐶)) |
100 | 98, 99 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → 𝐶 ⊆ ∪
𝑥 ∈ 𝐶 (𝑥 ·o 𝐶)) |
101 | 75, 100 | eqssd 3997 |
. . . . . . . . . . . 12
⊢ ((𝐶 = (ω ↑o
(ω ↑o 𝐷)) ∧ 𝐷 ∈ On) → ∪ 𝑥 ∈ 𝐶 (𝑥 ·o 𝐶) = 𝐶) |
102 | 101 | adantl 480 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
∪ 𝑥 ∈ 𝐶 (𝑥 ·o 𝐶) = 𝐶) |
103 | 52, 102 | eleqtrd 2828 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
(𝐴 ·o
𝐵) ∈ 𝐶) |
104 | 103 | ex 411 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴) → ((𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On) →
(𝐴 ·o
𝐵) ∈ 𝐶)) |
105 | 104 | 3expia 1118 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (∅ ∈ 𝐴 → ((𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On) →
(𝐴 ·o
𝐵) ∈ 𝐶))) |
106 | 105 | com23 86 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On) →
(∅ ∈ 𝐴 →
(𝐴 ·o
𝐵) ∈ 𝐶))) |
107 | 106 | imp 405 |
. . . . . 6
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
(∅ ∈ 𝐴 →
(𝐴 ·o
𝐵) ∈ 𝐶)) |
108 | 37, 107 | jaod 857 |
. . . . 5
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
((𝐴 = ∅ ∨ ∅
∈ 𝐴) → (𝐴 ·o 𝐵) ∈ 𝐶)) |
109 | 20, 108 | mpd 15 |
. . . 4
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
(𝐴 ·o
𝐵) ∈ 𝐶) |
110 | 109 | ex 411 |
. . 3
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On) →
(𝐴 ·o
𝐵) ∈ 𝐶)) |
111 | 6, 110 | jaod 857 |
. 2
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐶 = ∅ ∨ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On)) →
(𝐴 ·o
𝐵) ∈ 𝐶)) |
112 | 111 | imp 405 |
1
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o (ω
↑o 𝐷))
∧ 𝐷 ∈ On))) →
(𝐴 ·o
𝐵) ∈ 𝐶) |