MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noextendgt Structured version   Visualization version   GIF version

Theorem noextendgt 27582
Description: Extending a surreal with a positive sign results in a bigger surreal. (Contributed by Scott Fenton, 22-Nov-2021.)
Assertion
Ref Expression
noextendgt (𝐴 No 𝐴 <s (𝐴 ∪ {⟨dom 𝐴, 2o⟩}))

Proof of Theorem noextendgt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nodmord 27565 . . . . . . . 8 (𝐴 No → Ord dom 𝐴)
2 ordirr 6350 . . . . . . . 8 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
31, 2syl 17 . . . . . . 7 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
4 ndmfv 6893 . . . . . . 7 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
53, 4syl 17 . . . . . 6 (𝐴 No → (𝐴‘dom 𝐴) = ∅)
6 nofun 27561 . . . . . . . . 9 (𝐴 No → Fun 𝐴)
7 funfn 6546 . . . . . . . . 9 (Fun 𝐴𝐴 Fn dom 𝐴)
86, 7sylib 218 . . . . . . . 8 (𝐴 No 𝐴 Fn dom 𝐴)
9 nodmon 27562 . . . . . . . . 9 (𝐴 No → dom 𝐴 ∈ On)
10 2on 8447 . . . . . . . . 9 2o ∈ On
11 fnsng 6568 . . . . . . . . 9 ((dom 𝐴 ∈ On ∧ 2o ∈ On) → {⟨dom 𝐴, 2o⟩} Fn {dom 𝐴})
129, 10, 11sylancl 586 . . . . . . . 8 (𝐴 No → {⟨dom 𝐴, 2o⟩} Fn {dom 𝐴})
13 disjsn 4675 . . . . . . . . 9 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
143, 13sylibr 234 . . . . . . . 8 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
15 snidg 4624 . . . . . . . . 9 (dom 𝐴 ∈ On → dom 𝐴 ∈ {dom 𝐴})
169, 15syl 17 . . . . . . . 8 (𝐴 No → dom 𝐴 ∈ {dom 𝐴})
17 fvun2 6953 . . . . . . . 8 ((𝐴 Fn dom 𝐴 ∧ {⟨dom 𝐴, 2o⟩} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ dom 𝐴 ∈ {dom 𝐴})) → ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = ({⟨dom 𝐴, 2o⟩}‘dom 𝐴))
188, 12, 14, 16, 17syl112anc 1376 . . . . . . 7 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = ({⟨dom 𝐴, 2o⟩}‘dom 𝐴))
19 fvsng 7154 . . . . . . . 8 ((dom 𝐴 ∈ On ∧ 2o ∈ On) → ({⟨dom 𝐴, 2o⟩}‘dom 𝐴) = 2o)
209, 10, 19sylancl 586 . . . . . . 7 (𝐴 No → ({⟨dom 𝐴, 2o⟩}‘dom 𝐴) = 2o)
2118, 20eqtrd 2764 . . . . . 6 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o)
225, 21jca 511 . . . . 5 (𝐴 No → ((𝐴‘dom 𝐴) = ∅ ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o))
23223mix3d 1339 . . . 4 (𝐴 No → (((𝐴‘dom 𝐴) = 1o ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = ∅) ∨ ((𝐴‘dom 𝐴) = 1o ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o) ∨ ((𝐴‘dom 𝐴) = ∅ ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o)))
24 fvex 6871 . . . . 5 (𝐴‘dom 𝐴) ∈ V
25 fvex 6871 . . . . 5 ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) ∈ V
2624, 25brtp 5483 . . . 4 ((𝐴‘dom 𝐴){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) ↔ (((𝐴‘dom 𝐴) = 1o ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = ∅) ∨ ((𝐴‘dom 𝐴) = 1o ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o) ∨ ((𝐴‘dom 𝐴) = ∅ ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o)))
2723, 26sylibr 234 . . 3 (𝐴 No → (𝐴‘dom 𝐴){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴))
2810elexi 3470 . . . . . 6 2o ∈ V
2928prid2 4727 . . . . 5 2o ∈ {1o, 2o}
3029noextenddif 27580 . . . 4 (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)} = dom 𝐴)
3130fveq2d 6862 . . 3 (𝐴 No → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}) = (𝐴‘dom 𝐴))
3230fveq2d 6862 . . 3 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}) = ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴))
3327, 31, 323brtr4d 5139 . 2 (𝐴 No → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}))
3429noextend 27578 . . 3 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 2o⟩}) ∈ No )
35 sltval2 27568 . . 3 ((𝐴 No ∧ (𝐴 ∪ {⟨dom 𝐴, 2o⟩}) ∈ No ) → (𝐴 <s (𝐴 ∪ {⟨dom 𝐴, 2o⟩}) ↔ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)})))
3634, 35mpdan 687 . 2 (𝐴 No → (𝐴 <s (𝐴 ∪ {⟨dom 𝐴, 2o⟩}) ↔ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)})))
3733, 36mpbird 257 1 (𝐴 No 𝐴 <s (𝐴 ∪ {⟨dom 𝐴, 2o⟩}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2925  {crab 3405  cun 3912  cin 3913  c0 4296  {csn 4589  {ctp 4593  cop 4595   cint 4910   class class class wbr 5107  dom cdm 5638  Ord word 6331  Oncon0 6332  Fun wfun 6505   Fn wfn 6506  cfv 6511  1oc1o 8427  2oc2o 8428   No csur 27551   <s cslt 27552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555
This theorem is referenced by:  nosupbnd1  27626
  Copyright terms: Public domain W3C validator