Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noextendgt Structured version   Visualization version   GIF version

Theorem noextendgt 33177
Description: Extending a surreal with a positive sign results in a bigger surreal. (Contributed by Scott Fenton, 22-Nov-2021.)
Assertion
Ref Expression
noextendgt (𝐴 No 𝐴 <s (𝐴 ∪ {⟨dom 𝐴, 2o⟩}))

Proof of Theorem noextendgt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nodmord 33160 . . . . . . . 8 (𝐴 No → Ord dom 𝐴)
2 ordirr 6209 . . . . . . . 8 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
31, 2syl 17 . . . . . . 7 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
4 ndmfv 6700 . . . . . . 7 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
53, 4syl 17 . . . . . 6 (𝐴 No → (𝐴‘dom 𝐴) = ∅)
6 nofun 33156 . . . . . . . . 9 (𝐴 No → Fun 𝐴)
7 funfn 6385 . . . . . . . . 9 (Fun 𝐴𝐴 Fn dom 𝐴)
86, 7sylib 220 . . . . . . . 8 (𝐴 No 𝐴 Fn dom 𝐴)
9 nodmon 33157 . . . . . . . . 9 (𝐴 No → dom 𝐴 ∈ On)
10 2on 8111 . . . . . . . . 9 2o ∈ On
11 fnsng 6406 . . . . . . . . 9 ((dom 𝐴 ∈ On ∧ 2o ∈ On) → {⟨dom 𝐴, 2o⟩} Fn {dom 𝐴})
129, 10, 11sylancl 588 . . . . . . . 8 (𝐴 No → {⟨dom 𝐴, 2o⟩} Fn {dom 𝐴})
13 disjsn 4647 . . . . . . . . 9 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
143, 13sylibr 236 . . . . . . . 8 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
15 snidg 4599 . . . . . . . . 9 (dom 𝐴 ∈ On → dom 𝐴 ∈ {dom 𝐴})
169, 15syl 17 . . . . . . . 8 (𝐴 No → dom 𝐴 ∈ {dom 𝐴})
17 fvun2 6755 . . . . . . . 8 ((𝐴 Fn dom 𝐴 ∧ {⟨dom 𝐴, 2o⟩} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ dom 𝐴 ∈ {dom 𝐴})) → ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = ({⟨dom 𝐴, 2o⟩}‘dom 𝐴))
188, 12, 14, 16, 17syl112anc 1370 . . . . . . 7 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = ({⟨dom 𝐴, 2o⟩}‘dom 𝐴))
19 fvsng 6942 . . . . . . . 8 ((dom 𝐴 ∈ On ∧ 2o ∈ On) → ({⟨dom 𝐴, 2o⟩}‘dom 𝐴) = 2o)
209, 10, 19sylancl 588 . . . . . . 7 (𝐴 No → ({⟨dom 𝐴, 2o⟩}‘dom 𝐴) = 2o)
2118, 20eqtrd 2856 . . . . . 6 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o)
225, 21jca 514 . . . . 5 (𝐴 No → ((𝐴‘dom 𝐴) = ∅ ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o))
23223mix3d 1334 . . . 4 (𝐴 No → (((𝐴‘dom 𝐴) = 1o ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = ∅) ∨ ((𝐴‘dom 𝐴) = 1o ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o) ∨ ((𝐴‘dom 𝐴) = ∅ ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o)))
24 fvex 6683 . . . . 5 (𝐴‘dom 𝐴) ∈ V
25 fvex 6683 . . . . 5 ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) ∈ V
2624, 25brtp 32985 . . . 4 ((𝐴‘dom 𝐴){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) ↔ (((𝐴‘dom 𝐴) = 1o ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = ∅) ∨ ((𝐴‘dom 𝐴) = 1o ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o) ∨ ((𝐴‘dom 𝐴) = ∅ ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o)))
2723, 26sylibr 236 . . 3 (𝐴 No → (𝐴‘dom 𝐴){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴))
2810elexi 3513 . . . . . 6 2o ∈ V
2928prid2 4699 . . . . 5 2o ∈ {1o, 2o}
3029noextenddif 33175 . . . 4 (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)} = dom 𝐴)
3130fveq2d 6674 . . 3 (𝐴 No → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}) = (𝐴‘dom 𝐴))
3230fveq2d 6674 . . 3 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}) = ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴))
3327, 31, 323brtr4d 5098 . 2 (𝐴 No → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}))
3429noextend 33173 . . 3 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 2o⟩}) ∈ No )
35 sltval2 33163 . . 3 ((𝐴 No ∧ (𝐴 ∪ {⟨dom 𝐴, 2o⟩}) ∈ No ) → (𝐴 <s (𝐴 ∪ {⟨dom 𝐴, 2o⟩}) ↔ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)})))
3634, 35mpdan 685 . 2 (𝐴 No → (𝐴 <s (𝐴 ∪ {⟨dom 𝐴, 2o⟩}) ↔ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)})))
3733, 36mpbird 259 1 (𝐴 No 𝐴 <s (𝐴 ∪ {⟨dom 𝐴, 2o⟩}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3o 1082   = wceq 1537  wcel 2114  wne 3016  {crab 3142  cun 3934  cin 3935  c0 4291  {csn 4567  {ctp 4571  cop 4573   cint 4876   class class class wbr 5066  dom cdm 5555  Ord word 6190  Oncon0 6191  Fun wfun 6349   Fn wfn 6350  cfv 6355  1oc1o 8095  2oc2o 8096   No csur 33147   <s cslt 33148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-1o 8102  df-2o 8103  df-no 33150  df-slt 33151
This theorem is referenced by:  nosupbnd1  33214
  Copyright terms: Public domain W3C validator