MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noextendgt Structured version   Visualization version   GIF version

Theorem noextendgt 27609
Description: Extending a surreal with a positive sign results in a bigger surreal. (Contributed by Scott Fenton, 22-Nov-2021.)
Assertion
Ref Expression
noextendgt (𝐴 No 𝐴 <s (𝐴 ∪ {⟨dom 𝐴, 2o⟩}))

Proof of Theorem noextendgt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nodmord 27592 . . . . . . . 8 (𝐴 No → Ord dom 𝐴)
2 ordirr 6324 . . . . . . . 8 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
31, 2syl 17 . . . . . . 7 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
4 ndmfv 6854 . . . . . . 7 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
53, 4syl 17 . . . . . 6 (𝐴 No → (𝐴‘dom 𝐴) = ∅)
6 nofun 27588 . . . . . . . . 9 (𝐴 No → Fun 𝐴)
7 funfn 6511 . . . . . . . . 9 (Fun 𝐴𝐴 Fn dom 𝐴)
86, 7sylib 218 . . . . . . . 8 (𝐴 No 𝐴 Fn dom 𝐴)
9 nodmon 27589 . . . . . . . . 9 (𝐴 No → dom 𝐴 ∈ On)
10 2on 8398 . . . . . . . . 9 2o ∈ On
11 fnsng 6533 . . . . . . . . 9 ((dom 𝐴 ∈ On ∧ 2o ∈ On) → {⟨dom 𝐴, 2o⟩} Fn {dom 𝐴})
129, 10, 11sylancl 586 . . . . . . . 8 (𝐴 No → {⟨dom 𝐴, 2o⟩} Fn {dom 𝐴})
13 disjsn 4661 . . . . . . . . 9 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
143, 13sylibr 234 . . . . . . . 8 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
15 snidg 4610 . . . . . . . . 9 (dom 𝐴 ∈ On → dom 𝐴 ∈ {dom 𝐴})
169, 15syl 17 . . . . . . . 8 (𝐴 No → dom 𝐴 ∈ {dom 𝐴})
17 fvun2 6914 . . . . . . . 8 ((𝐴 Fn dom 𝐴 ∧ {⟨dom 𝐴, 2o⟩} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ dom 𝐴 ∈ {dom 𝐴})) → ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = ({⟨dom 𝐴, 2o⟩}‘dom 𝐴))
188, 12, 14, 16, 17syl112anc 1376 . . . . . . 7 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = ({⟨dom 𝐴, 2o⟩}‘dom 𝐴))
19 fvsng 7114 . . . . . . . 8 ((dom 𝐴 ∈ On ∧ 2o ∈ On) → ({⟨dom 𝐴, 2o⟩}‘dom 𝐴) = 2o)
209, 10, 19sylancl 586 . . . . . . 7 (𝐴 No → ({⟨dom 𝐴, 2o⟩}‘dom 𝐴) = 2o)
2118, 20eqtrd 2766 . . . . . 6 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o)
225, 21jca 511 . . . . 5 (𝐴 No → ((𝐴‘dom 𝐴) = ∅ ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o))
23223mix3d 1339 . . . 4 (𝐴 No → (((𝐴‘dom 𝐴) = 1o ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = ∅) ∨ ((𝐴‘dom 𝐴) = 1o ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o) ∨ ((𝐴‘dom 𝐴) = ∅ ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o)))
24 fvex 6835 . . . . 5 (𝐴‘dom 𝐴) ∈ V
25 fvex 6835 . . . . 5 ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) ∈ V
2624, 25brtp 5461 . . . 4 ((𝐴‘dom 𝐴){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) ↔ (((𝐴‘dom 𝐴) = 1o ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = ∅) ∨ ((𝐴‘dom 𝐴) = 1o ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o) ∨ ((𝐴‘dom 𝐴) = ∅ ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o)))
2723, 26sylibr 234 . . 3 (𝐴 No → (𝐴‘dom 𝐴){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴))
2810elexi 3459 . . . . . 6 2o ∈ V
2928prid2 4713 . . . . 5 2o ∈ {1o, 2o}
3029noextenddif 27607 . . . 4 (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)} = dom 𝐴)
3130fveq2d 6826 . . 3 (𝐴 No → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}) = (𝐴‘dom 𝐴))
3230fveq2d 6826 . . 3 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}) = ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴))
3327, 31, 323brtr4d 5121 . 2 (𝐴 No → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}))
3429noextend 27605 . . 3 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 2o⟩}) ∈ No )
35 sltval2 27595 . . 3 ((𝐴 No ∧ (𝐴 ∪ {⟨dom 𝐴, 2o⟩}) ∈ No ) → (𝐴 <s (𝐴 ∪ {⟨dom 𝐴, 2o⟩}) ↔ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)})))
3634, 35mpdan 687 . 2 (𝐴 No → (𝐴 <s (𝐴 ∪ {⟨dom 𝐴, 2o⟩}) ↔ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)})))
3733, 36mpbird 257 1 (𝐴 No 𝐴 <s (𝐴 ∪ {⟨dom 𝐴, 2o⟩}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1541  wcel 2111  wne 2928  {crab 3395  cun 3895  cin 3896  c0 4280  {csn 4573  {ctp 4577  cop 4579   cint 4895   class class class wbr 5089  dom cdm 5614  Ord word 6305  Oncon0 6306  Fun wfun 6475   Fn wfn 6476  cfv 6481  1oc1o 8378  2oc2o 8379   No csur 27578   <s cslt 27579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582
This theorem is referenced by:  nosupbnd1  27653
  Copyright terms: Public domain W3C validator