MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noextendgt Structured version   Visualization version   GIF version

Theorem noextendgt 27558
Description: Extending a surreal with a positive sign results in a bigger surreal. (Contributed by Scott Fenton, 22-Nov-2021.)
Assertion
Ref Expression
noextendgt (𝐴 No 𝐴 <s (𝐴 ∪ {⟨dom 𝐴, 2o⟩}))

Proof of Theorem noextendgt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nodmord 27541 . . . . . . . 8 (𝐴 No → Ord dom 𝐴)
2 ordirr 6338 . . . . . . . 8 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
31, 2syl 17 . . . . . . 7 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
4 ndmfv 6875 . . . . . . 7 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
53, 4syl 17 . . . . . 6 (𝐴 No → (𝐴‘dom 𝐴) = ∅)
6 nofun 27537 . . . . . . . . 9 (𝐴 No → Fun 𝐴)
7 funfn 6530 . . . . . . . . 9 (Fun 𝐴𝐴 Fn dom 𝐴)
86, 7sylib 218 . . . . . . . 8 (𝐴 No 𝐴 Fn dom 𝐴)
9 nodmon 27538 . . . . . . . . 9 (𝐴 No → dom 𝐴 ∈ On)
10 2on 8424 . . . . . . . . 9 2o ∈ On
11 fnsng 6552 . . . . . . . . 9 ((dom 𝐴 ∈ On ∧ 2o ∈ On) → {⟨dom 𝐴, 2o⟩} Fn {dom 𝐴})
129, 10, 11sylancl 586 . . . . . . . 8 (𝐴 No → {⟨dom 𝐴, 2o⟩} Fn {dom 𝐴})
13 disjsn 4671 . . . . . . . . 9 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
143, 13sylibr 234 . . . . . . . 8 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
15 snidg 4620 . . . . . . . . 9 (dom 𝐴 ∈ On → dom 𝐴 ∈ {dom 𝐴})
169, 15syl 17 . . . . . . . 8 (𝐴 No → dom 𝐴 ∈ {dom 𝐴})
17 fvun2 6935 . . . . . . . 8 ((𝐴 Fn dom 𝐴 ∧ {⟨dom 𝐴, 2o⟩} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ dom 𝐴 ∈ {dom 𝐴})) → ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = ({⟨dom 𝐴, 2o⟩}‘dom 𝐴))
188, 12, 14, 16, 17syl112anc 1376 . . . . . . 7 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = ({⟨dom 𝐴, 2o⟩}‘dom 𝐴))
19 fvsng 7136 . . . . . . . 8 ((dom 𝐴 ∈ On ∧ 2o ∈ On) → ({⟨dom 𝐴, 2o⟩}‘dom 𝐴) = 2o)
209, 10, 19sylancl 586 . . . . . . 7 (𝐴 No → ({⟨dom 𝐴, 2o⟩}‘dom 𝐴) = 2o)
2118, 20eqtrd 2764 . . . . . 6 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o)
225, 21jca 511 . . . . 5 (𝐴 No → ((𝐴‘dom 𝐴) = ∅ ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o))
23223mix3d 1339 . . . 4 (𝐴 No → (((𝐴‘dom 𝐴) = 1o ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = ∅) ∨ ((𝐴‘dom 𝐴) = 1o ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o) ∨ ((𝐴‘dom 𝐴) = ∅ ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o)))
24 fvex 6853 . . . . 5 (𝐴‘dom 𝐴) ∈ V
25 fvex 6853 . . . . 5 ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) ∈ V
2624, 25brtp 5478 . . . 4 ((𝐴‘dom 𝐴){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) ↔ (((𝐴‘dom 𝐴) = 1o ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = ∅) ∨ ((𝐴‘dom 𝐴) = 1o ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o) ∨ ((𝐴‘dom 𝐴) = ∅ ∧ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴) = 2o)))
2723, 26sylibr 234 . . 3 (𝐴 No → (𝐴‘dom 𝐴){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴))
2810elexi 3467 . . . . . 6 2o ∈ V
2928prid2 4723 . . . . 5 2o ∈ {1o, 2o}
3029noextenddif 27556 . . . 4 (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)} = dom 𝐴)
3130fveq2d 6844 . . 3 (𝐴 No → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}) = (𝐴‘dom 𝐴))
3230fveq2d 6844 . . 3 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}) = ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘dom 𝐴))
3327, 31, 323brtr4d 5134 . 2 (𝐴 No → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}))
3429noextend 27554 . . 3 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 2o⟩}) ∈ No )
35 sltval2 27544 . . 3 ((𝐴 No ∧ (𝐴 ∪ {⟨dom 𝐴, 2o⟩}) ∈ No ) → (𝐴 <s (𝐴 ∪ {⟨dom 𝐴, 2o⟩}) ↔ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)})))
3634, 35mpdan 687 . 2 (𝐴 No → (𝐴 <s (𝐴 ∪ {⟨dom 𝐴, 2o⟩}) ↔ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 2o⟩})‘𝑥)})))
3733, 36mpbird 257 1 (𝐴 No 𝐴 <s (𝐴 ∪ {⟨dom 𝐴, 2o⟩}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2925  {crab 3402  cun 3909  cin 3910  c0 4292  {csn 4585  {ctp 4589  cop 4591   cint 4906   class class class wbr 5102  dom cdm 5631  Ord word 6319  Oncon0 6320  Fun wfun 6493   Fn wfn 6494  cfv 6499  1oc1o 8404  2oc2o 8405   No csur 27527   <s cslt 27528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-1o 8411  df-2o 8412  df-no 27530  df-slt 27531
This theorem is referenced by:  nosupbnd1  27602
  Copyright terms: Public domain W3C validator