MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwshashlem1 Structured version   Visualization version   GIF version

Theorem cshwshashlem1 16425
Description: If cyclically shifting a word of length being a prime number not consisting of identical symbols by at least one position (and not by as many positions as the length of the word), the result will not be the word itself. (Contributed by AV, 19-May-2018.) (Revised by AV, 8-Jun-2018.) (Revised by AV, 10-Nov-2018.)
Hypothesis
Ref Expression
cshwshash.0 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
Assertion
Ref Expression
cshwshashlem1 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) ∧ 𝐿 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝐿) ≠ 𝑊)
Distinct variable groups:   𝑖,𝐿   𝑖,𝑉   𝑖,𝑊   𝜑,𝑖

Proof of Theorem cshwshashlem1
StepHypRef Expression
1 df-ne 2991 . . . . . . 7 ((𝑊𝑖) ≠ (𝑊‘0) ↔ ¬ (𝑊𝑖) = (𝑊‘0))
21rexbii 3213 . . . . . 6 (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) ↔ ∃𝑖 ∈ (0..^(♯‘𝑊)) ¬ (𝑊𝑖) = (𝑊‘0))
3 rexnal 3204 . . . . . 6 (∃𝑖 ∈ (0..^(♯‘𝑊)) ¬ (𝑊𝑖) = (𝑊‘0) ↔ ¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
42, 3bitri 278 . . . . 5 (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) ↔ ¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
5 simpll 766 . . . . . . . . . . 11 (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝜑)
6 fzo0ss1 13066 . . . . . . . . . . . . . 14 (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))
7 fzossfz 13055 . . . . . . . . . . . . . 14 (0..^(♯‘𝑊)) ⊆ (0...(♯‘𝑊))
86, 7sstri 3927 . . . . . . . . . . . . 13 (1..^(♯‘𝑊)) ⊆ (0...(♯‘𝑊))
98sseli 3914 . . . . . . . . . . . 12 (𝐿 ∈ (1..^(♯‘𝑊)) → 𝐿 ∈ (0...(♯‘𝑊)))
109ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝐿 ∈ (0...(♯‘𝑊)))
11 simpr 488 . . . . . . . . . . 11 (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝑊 cyclShift 𝐿) = 𝑊)
12 cshwshash.0 . . . . . . . . . . . . 13 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
13 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
14 simpr 488 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (♯‘𝑊) ∈ ℙ)
1514adantr 484 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (♯‘𝑊) ∈ ℙ)
16 elfzelz 12906 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 ∈ ℤ)
1716adantl 485 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → 𝐿 ∈ ℤ)
18 cshwsidrepswmod0 16424 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ) → ((𝑊 cyclShift 𝐿) = 𝑊 → ((𝐿 mod (♯‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))))
1913, 15, 17, 18syl3anc 1368 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 cyclShift 𝐿) = 𝑊 → ((𝐿 mod (♯‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))))
2019ex 416 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝐿 ∈ (0...(♯‘𝑊)) → ((𝑊 cyclShift 𝐿) = 𝑊 → ((𝐿 mod (♯‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))))
21203imp 1108 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → ((𝐿 mod (♯‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))
22 olc 865 . . . . . . . . . . . . . . . . . . . 20 (𝐿 = (♯‘𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊)))
2322a1d 25 . . . . . . . . . . . . . . . . . . 19 (𝐿 = (♯‘𝑊) → (((𝐿 mod (♯‘𝑊)) = 0 ∧ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊))))
24 fzofzim 13083 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐿 ≠ (♯‘𝑊) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → 𝐿 ∈ (0..^(♯‘𝑊)))
25 zmodidfzoimp 13268 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐿 ∈ (0..^(♯‘𝑊)) → (𝐿 mod (♯‘𝑊)) = 𝐿)
26 eqtr2 2822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐿 mod (♯‘𝑊)) = 𝐿 ∧ (𝐿 mod (♯‘𝑊)) = 0) → 𝐿 = 0)
2726a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐿 mod (♯‘𝑊)) = 𝐿 ∧ (𝐿 mod (♯‘𝑊)) = 0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → 𝐿 = 0))
2827ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐿 mod (♯‘𝑊)) = 𝐿 → ((𝐿 mod (♯‘𝑊)) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → 𝐿 = 0)))
2925, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐿 ∈ (0..^(♯‘𝑊)) → ((𝐿 mod (♯‘𝑊)) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → 𝐿 = 0)))
3024, 29syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐿 ≠ (♯‘𝑊) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝐿 mod (♯‘𝑊)) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → 𝐿 = 0)))
3130expcom 417 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐿 ∈ (0...(♯‘𝑊)) → (𝐿 ≠ (♯‘𝑊) → ((𝐿 mod (♯‘𝑊)) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → 𝐿 = 0))))
3231com24 95 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ (0...(♯‘𝑊)) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((𝐿 mod (♯‘𝑊)) = 0 → (𝐿 ≠ (♯‘𝑊) → 𝐿 = 0))))
3332impcom 411 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝐿 mod (♯‘𝑊)) = 0 → (𝐿 ≠ (♯‘𝑊) → 𝐿 = 0)))
34333adant3 1129 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → ((𝐿 mod (♯‘𝑊)) = 0 → (𝐿 ≠ (♯‘𝑊) → 𝐿 = 0)))
3534impcom 411 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐿 mod (♯‘𝑊)) = 0 ∧ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝐿 ≠ (♯‘𝑊) → 𝐿 = 0))
3635impcom 411 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ≠ (♯‘𝑊) ∧ ((𝐿 mod (♯‘𝑊)) = 0 ∧ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊))) → 𝐿 = 0)
3736orcd 870 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ≠ (♯‘𝑊) ∧ ((𝐿 mod (♯‘𝑊)) = 0 ∧ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊))) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊)))
3837ex 416 . . . . . . . . . . . . . . . . . . 19 (𝐿 ≠ (♯‘𝑊) → (((𝐿 mod (♯‘𝑊)) = 0 ∧ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊))))
3923, 38pm2.61ine 3073 . . . . . . . . . . . . . . . . . 18 (((𝐿 mod (♯‘𝑊)) = 0 ∧ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊)))
4039orcd 870 . . . . . . . . . . . . . . . . 17 (((𝐿 mod (♯‘𝑊)) = 0 ∧ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → ((𝐿 = 0 ∨ 𝐿 = (♯‘𝑊)) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))
41 df-3or 1085 . . . . . . . . . . . . . . . . 17 ((𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) ↔ ((𝐿 = 0 ∨ 𝐿 = (♯‘𝑊)) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))
4240, 41sylibr 237 . . . . . . . . . . . . . . . 16 (((𝐿 mod (♯‘𝑊)) = 0 ∧ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))
4342ex 416 . . . . . . . . . . . . . . 15 ((𝐿 mod (♯‘𝑊)) = 0 → (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))))
44 3mix3 1329 . . . . . . . . . . . . . . . 16 (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))
4544a1d 25 . . . . . . . . . . . . . . 15 (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) → (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))))
4643, 45jaoi 854 . . . . . . . . . . . . . 14 (((𝐿 mod (♯‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))))
4721, 46mpcom 38 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))
4812, 47syl3an1 1160 . . . . . . . . . . . 12 ((𝜑𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))
49 3mix1 1327 . . . . . . . . . . . . . 14 (𝐿 = 0 → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
5049a1d 25 . . . . . . . . . . . . 13 (𝐿 = 0 → ((𝜑𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
51 3mix2 1328 . . . . . . . . . . . . . 14 (𝐿 = (♯‘𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
5251a1d 25 . . . . . . . . . . . . 13 (𝐿 = (♯‘𝑊) → ((𝜑𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
53 repswsymballbi 14137 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
5453adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
5512, 54syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
56553ad2ant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
5756biimpa 480 . . . . . . . . . . . . . . 15 (((𝜑𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
58573mix3d 1335 . . . . . . . . . . . . . 14 (((𝜑𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
5958expcom 417 . . . . . . . . . . . . 13 (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) → ((𝜑𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
6050, 52, 593jaoi 1424 . . . . . . . . . . . 12 ((𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → ((𝜑𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
6148, 60mpcom 38 . . . . . . . . . . 11 ((𝜑𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
625, 10, 11, 61syl3anc 1368 . . . . . . . . . 10 (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
63 elfzo1 13086 . . . . . . . . . . . . . 14 (𝐿 ∈ (1..^(♯‘𝑊)) ↔ (𝐿 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)))
64 nnne0 11663 . . . . . . . . . . . . . . . 16 (𝐿 ∈ ℕ → 𝐿 ≠ 0)
65 df-ne 2991 . . . . . . . . . . . . . . . . 17 (𝐿 ≠ 0 ↔ ¬ 𝐿 = 0)
66 pm2.21 123 . . . . . . . . . . . . . . . . 17 𝐿 = 0 → (𝐿 = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
6765, 66sylbi 220 . . . . . . . . . . . . . . . 16 (𝐿 ≠ 0 → (𝐿 = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
6864, 67syl 17 . . . . . . . . . . . . . . 15 (𝐿 ∈ ℕ → (𝐿 = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
69683ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → (𝐿 = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
7063, 69sylbi 220 . . . . . . . . . . . . 13 (𝐿 ∈ (1..^(♯‘𝑊)) → (𝐿 = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
7170ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
7271com12 32 . . . . . . . . . . 11 (𝐿 = 0 → (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
73 nnre 11636 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ → 𝐿 ∈ ℝ)
74 ltne 10730 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℝ ∧ 𝐿 < (♯‘𝑊)) → (♯‘𝑊) ≠ 𝐿)
7573, 74sylan 583 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → (♯‘𝑊) ≠ 𝐿)
76 df-ne 2991 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ≠ 𝐿 ↔ ¬ (♯‘𝑊) = 𝐿)
77 eqcom 2808 . . . . . . . . . . . . . . . . . 18 (𝐿 = (♯‘𝑊) ↔ (♯‘𝑊) = 𝐿)
78 pm2.21 123 . . . . . . . . . . . . . . . . . 18 (¬ (♯‘𝑊) = 𝐿 → ((♯‘𝑊) = 𝐿 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
7977, 78syl5bi 245 . . . . . . . . . . . . . . . . 17 (¬ (♯‘𝑊) = 𝐿 → (𝐿 = (♯‘𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8076, 79sylbi 220 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) ≠ 𝐿 → (𝐿 = (♯‘𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8175, 80syl 17 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → (𝐿 = (♯‘𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
82813adant2 1128 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → (𝐿 = (♯‘𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8363, 82sylbi 220 . . . . . . . . . . . . 13 (𝐿 ∈ (1..^(♯‘𝑊)) → (𝐿 = (♯‘𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8483ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = (♯‘𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8584com12 32 . . . . . . . . . . 11 (𝐿 = (♯‘𝑊) → (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
86 ax-1 6 . . . . . . . . . . 11 (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) → (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8772, 85, 863jaoi 1424 . . . . . . . . . 10 ((𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)) → (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8862, 87mpcom 38 . . . . . . . . 9 (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
8988pm2.24d 154 . . . . . . . 8 (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) → (𝑊 cyclShift 𝐿) ≠ 𝑊))
9089exp31 423 . . . . . . 7 (𝜑 → (𝐿 ∈ (1..^(♯‘𝑊)) → ((𝑊 cyclShift 𝐿) = 𝑊 → (¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) → (𝑊 cyclShift 𝐿) ≠ 𝑊))))
9190com34 91 . . . . . 6 (𝜑 → (𝐿 ∈ (1..^(♯‘𝑊)) → (¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) → ((𝑊 cyclShift 𝐿) = 𝑊 → (𝑊 cyclShift 𝐿) ≠ 𝑊))))
9291com23 86 . . . . 5 (𝜑 → (¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) → (𝐿 ∈ (1..^(♯‘𝑊)) → ((𝑊 cyclShift 𝐿) = 𝑊 → (𝑊 cyclShift 𝐿) ≠ 𝑊))))
934, 92syl5bi 245 . . . 4 (𝜑 → (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) → (𝐿 ∈ (1..^(♯‘𝑊)) → ((𝑊 cyclShift 𝐿) = 𝑊 → (𝑊 cyclShift 𝐿) ≠ 𝑊))))
94933imp 1108 . . 3 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) ∧ 𝐿 ∈ (1..^(♯‘𝑊))) → ((𝑊 cyclShift 𝐿) = 𝑊 → (𝑊 cyclShift 𝐿) ≠ 𝑊))
9594com12 32 . 2 ((𝑊 cyclShift 𝐿) = 𝑊 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) ∧ 𝐿 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝐿) ≠ 𝑊))
96 ax-1 6 . 2 ((𝑊 cyclShift 𝐿) ≠ 𝑊 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) ∧ 𝐿 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝐿) ≠ 𝑊))
9795, 96pm2.61ine 3073 1 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) ∧ 𝐿 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝐿) ≠ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3o 1083  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wral 3109  wrex 3110   class class class wbr 5033  cfv 6328  (class class class)co 7139  cr 10529  0cc0 10530  1c1 10531   < clt 10668  cn 11629  cz 11973  ...cfz 12889  ..^cfzo 13032   mod cmo 13236  chash 13690  Word cword 13861   repeatS creps 14125   cyclShift ccsh 14145  cprime 16009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-hash 13691  df-word 13862  df-concat 13918  df-substr 13998  df-pfx 14028  df-reps 14126  df-csh 14146  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-dvds 15604  df-gcd 15838  df-prm 16010  df-phi 16097
This theorem is referenced by:  cshwshashlem2  16426
  Copyright terms: Public domain W3C validator