MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwshashlem1 Structured version   Visualization version   GIF version

Theorem cshwshashlem1 17133
Description: If cyclically shifting a word of length being a prime number not consisting of identical symbols by at least one position (and not by as many positions as the length of the word), the result will not be the word itself. (Contributed by AV, 19-May-2018.) (Revised by AV, 8-Jun-2018.) (Revised by AV, 10-Nov-2018.)
Hypothesis
Ref Expression
cshwshash.0 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
Assertion
Ref Expression
cshwshashlem1 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) ∧ 𝐿 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝐿) ≠ 𝑊)
Distinct variable groups:   𝑖,𝐿   𝑖,𝑉   𝑖,𝑊   𝜑,𝑖

Proof of Theorem cshwshashlem1
StepHypRef Expression
1 df-ne 2941 . . . . . . 7 ((𝑊𝑖) ≠ (𝑊‘0) ↔ ¬ (𝑊𝑖) = (𝑊‘0))
21rexbii 3094 . . . . . 6 (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) ↔ ∃𝑖 ∈ (0..^(♯‘𝑊)) ¬ (𝑊𝑖) = (𝑊‘0))
3 rexnal 3100 . . . . . 6 (∃𝑖 ∈ (0..^(♯‘𝑊)) ¬ (𝑊𝑖) = (𝑊‘0) ↔ ¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
42, 3bitri 275 . . . . 5 (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) ↔ ¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
5 simpll 767 . . . . . . . . . . 11 (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝜑)
6 fzo0ss1 13729 . . . . . . . . . . . . . 14 (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))
7 fzossfz 13718 . . . . . . . . . . . . . 14 (0..^(♯‘𝑊)) ⊆ (0...(♯‘𝑊))
86, 7sstri 3993 . . . . . . . . . . . . 13 (1..^(♯‘𝑊)) ⊆ (0...(♯‘𝑊))
98sseli 3979 . . . . . . . . . . . 12 (𝐿 ∈ (1..^(♯‘𝑊)) → 𝐿 ∈ (0...(♯‘𝑊)))
109ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝐿 ∈ (0...(♯‘𝑊)))
11 simpr 484 . . . . . . . . . . 11 (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝑊 cyclShift 𝐿) = 𝑊)
12 cshwshash.0 . . . . . . . . . . . . 13 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
13 simpll 767 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
14 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (♯‘𝑊) ∈ ℙ)
1514adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (♯‘𝑊) ∈ ℙ)
16 elfzelz 13564 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 ∈ ℤ)
1716adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → 𝐿 ∈ ℤ)
18 cshwsidrepswmod0 17132 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ) → ((𝑊 cyclShift 𝐿) = 𝑊 → ((𝐿 mod (♯‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))))
1913, 15, 17, 18syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 cyclShift 𝐿) = 𝑊 → ((𝐿 mod (♯‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))))
2019ex 412 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝐿 ∈ (0...(♯‘𝑊)) → ((𝑊 cyclShift 𝐿) = 𝑊 → ((𝐿 mod (♯‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))))
21203imp 1111 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → ((𝐿 mod (♯‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))
22 olc 869 . . . . . . . . . . . . . . . . . . . 20 (𝐿 = (♯‘𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊)))
2322a1d 25 . . . . . . . . . . . . . . . . . . 19 (𝐿 = (♯‘𝑊) → (((𝐿 mod (♯‘𝑊)) = 0 ∧ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊))))
24 fzofzim 13749 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐿 ≠ (♯‘𝑊) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → 𝐿 ∈ (0..^(♯‘𝑊)))
25 zmodidfzoimp 13941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐿 ∈ (0..^(♯‘𝑊)) → (𝐿 mod (♯‘𝑊)) = 𝐿)
26 eqtr2 2761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐿 mod (♯‘𝑊)) = 𝐿 ∧ (𝐿 mod (♯‘𝑊)) = 0) → 𝐿 = 0)
2726a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐿 mod (♯‘𝑊)) = 𝐿 ∧ (𝐿 mod (♯‘𝑊)) = 0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → 𝐿 = 0))
2827ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐿 mod (♯‘𝑊)) = 𝐿 → ((𝐿 mod (♯‘𝑊)) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → 𝐿 = 0)))
2925, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐿 ∈ (0..^(♯‘𝑊)) → ((𝐿 mod (♯‘𝑊)) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → 𝐿 = 0)))
3024, 29syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐿 ≠ (♯‘𝑊) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝐿 mod (♯‘𝑊)) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → 𝐿 = 0)))
3130expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐿 ∈ (0...(♯‘𝑊)) → (𝐿 ≠ (♯‘𝑊) → ((𝐿 mod (♯‘𝑊)) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → 𝐿 = 0))))
3231com24 95 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ (0...(♯‘𝑊)) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((𝐿 mod (♯‘𝑊)) = 0 → (𝐿 ≠ (♯‘𝑊) → 𝐿 = 0))))
3332impcom 407 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝐿 mod (♯‘𝑊)) = 0 → (𝐿 ≠ (♯‘𝑊) → 𝐿 = 0)))
34333adant3 1133 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → ((𝐿 mod (♯‘𝑊)) = 0 → (𝐿 ≠ (♯‘𝑊) → 𝐿 = 0)))
3534impcom 407 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐿 mod (♯‘𝑊)) = 0 ∧ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝐿 ≠ (♯‘𝑊) → 𝐿 = 0))
3635impcom 407 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ≠ (♯‘𝑊) ∧ ((𝐿 mod (♯‘𝑊)) = 0 ∧ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊))) → 𝐿 = 0)
3736orcd 874 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ≠ (♯‘𝑊) ∧ ((𝐿 mod (♯‘𝑊)) = 0 ∧ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊))) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊)))
3837ex 412 . . . . . . . . . . . . . . . . . . 19 (𝐿 ≠ (♯‘𝑊) → (((𝐿 mod (♯‘𝑊)) = 0 ∧ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊))))
3923, 38pm2.61ine 3025 . . . . . . . . . . . . . . . . . 18 (((𝐿 mod (♯‘𝑊)) = 0 ∧ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊)))
4039orcd 874 . . . . . . . . . . . . . . . . 17 (((𝐿 mod (♯‘𝑊)) = 0 ∧ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → ((𝐿 = 0 ∨ 𝐿 = (♯‘𝑊)) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))
41 df-3or 1088 . . . . . . . . . . . . . . . . 17 ((𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) ↔ ((𝐿 = 0 ∨ 𝐿 = (♯‘𝑊)) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))
4240, 41sylibr 234 . . . . . . . . . . . . . . . 16 (((𝐿 mod (♯‘𝑊)) = 0 ∧ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))
4342ex 412 . . . . . . . . . . . . . . 15 ((𝐿 mod (♯‘𝑊)) = 0 → (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))))
44 3mix3 1333 . . . . . . . . . . . . . . . 16 (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))
4544a1d 25 . . . . . . . . . . . . . . 15 (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) → (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))))
4643, 45jaoi 858 . . . . . . . . . . . . . 14 (((𝐿 mod (♯‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))))
4721, 46mpcom 38 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))
4812, 47syl3an1 1164 . . . . . . . . . . . 12 ((𝜑𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))
49 3mix1 1331 . . . . . . . . . . . . . 14 (𝐿 = 0 → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
5049a1d 25 . . . . . . . . . . . . 13 (𝐿 = 0 → ((𝜑𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
51 3mix2 1332 . . . . . . . . . . . . . 14 (𝐿 = (♯‘𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
5251a1d 25 . . . . . . . . . . . . 13 (𝐿 = (♯‘𝑊) → ((𝜑𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
53 repswsymballbi 14818 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
5453adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
5512, 54syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
56553ad2ant1 1134 . . . . . . . . . . . . . . . 16 ((𝜑𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
5756biimpa 476 . . . . . . . . . . . . . . 15 (((𝜑𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
58573mix3d 1339 . . . . . . . . . . . . . 14 (((𝜑𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) ∧ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
5958expcom 413 . . . . . . . . . . . . 13 (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) → ((𝜑𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
6050, 52, 593jaoi 1430 . . . . . . . . . . . 12 ((𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) → ((𝜑𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))))
6148, 60mpcom 38 . . . . . . . . . . 11 ((𝜑𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
625, 10, 11, 61syl3anc 1373 . . . . . . . . . 10 (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
63 elfzo1 13752 . . . . . . . . . . . . . 14 (𝐿 ∈ (1..^(♯‘𝑊)) ↔ (𝐿 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)))
64 nnne0 12300 . . . . . . . . . . . . . . . 16 (𝐿 ∈ ℕ → 𝐿 ≠ 0)
65 df-ne 2941 . . . . . . . . . . . . . . . . 17 (𝐿 ≠ 0 ↔ ¬ 𝐿 = 0)
66 pm2.21 123 . . . . . . . . . . . . . . . . 17 𝐿 = 0 → (𝐿 = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
6765, 66sylbi 217 . . . . . . . . . . . . . . . 16 (𝐿 ≠ 0 → (𝐿 = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
6864, 67syl 17 . . . . . . . . . . . . . . 15 (𝐿 ∈ ℕ → (𝐿 = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
69683ad2ant1 1134 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → (𝐿 = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
7063, 69sylbi 217 . . . . . . . . . . . . 13 (𝐿 ∈ (1..^(♯‘𝑊)) → (𝐿 = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
7170ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = 0 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
7271com12 32 . . . . . . . . . . 11 (𝐿 = 0 → (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
73 nnre 12273 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ → 𝐿 ∈ ℝ)
74 ltne 11358 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℝ ∧ 𝐿 < (♯‘𝑊)) → (♯‘𝑊) ≠ 𝐿)
7573, 74sylan 580 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → (♯‘𝑊) ≠ 𝐿)
76 df-ne 2941 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ≠ 𝐿 ↔ ¬ (♯‘𝑊) = 𝐿)
77 eqcom 2744 . . . . . . . . . . . . . . . . . 18 (𝐿 = (♯‘𝑊) ↔ (♯‘𝑊) = 𝐿)
78 pm2.21 123 . . . . . . . . . . . . . . . . . 18 (¬ (♯‘𝑊) = 𝐿 → ((♯‘𝑊) = 𝐿 → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
7977, 78biimtrid 242 . . . . . . . . . . . . . . . . 17 (¬ (♯‘𝑊) = 𝐿 → (𝐿 = (♯‘𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8076, 79sylbi 217 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) ≠ 𝐿 → (𝐿 = (♯‘𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8175, 80syl 17 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → (𝐿 = (♯‘𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
82813adant2 1132 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → (𝐿 = (♯‘𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8363, 82sylbi 217 . . . . . . . . . . . . 13 (𝐿 ∈ (1..^(♯‘𝑊)) → (𝐿 = (♯‘𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8483ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 = (♯‘𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8584com12 32 . . . . . . . . . . 11 (𝐿 = (♯‘𝑊) → (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
86 ax-1 6 . . . . . . . . . . 11 (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) → (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8772, 85, 863jaoi 1430 . . . . . . . . . 10 ((𝐿 = 0 ∨ 𝐿 = (♯‘𝑊) ∨ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)) → (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0)))
8862, 87mpcom 38 . . . . . . . . 9 (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0))
8988pm2.24d 151 . . . . . . . 8 (((𝜑𝐿 ∈ (1..^(♯‘𝑊))) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) → (𝑊 cyclShift 𝐿) ≠ 𝑊))
9089exp31 419 . . . . . . 7 (𝜑 → (𝐿 ∈ (1..^(♯‘𝑊)) → ((𝑊 cyclShift 𝐿) = 𝑊 → (¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) → (𝑊 cyclShift 𝐿) ≠ 𝑊))))
9190com34 91 . . . . . 6 (𝜑 → (𝐿 ∈ (1..^(♯‘𝑊)) → (¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) → ((𝑊 cyclShift 𝐿) = 𝑊 → (𝑊 cyclShift 𝐿) ≠ 𝑊))))
9291com23 86 . . . . 5 (𝜑 → (¬ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑊‘0) → (𝐿 ∈ (1..^(♯‘𝑊)) → ((𝑊 cyclShift 𝐿) = 𝑊 → (𝑊 cyclShift 𝐿) ≠ 𝑊))))
934, 92biimtrid 242 . . . 4 (𝜑 → (∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) → (𝐿 ∈ (1..^(♯‘𝑊)) → ((𝑊 cyclShift 𝐿) = 𝑊 → (𝑊 cyclShift 𝐿) ≠ 𝑊))))
94933imp 1111 . . 3 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) ∧ 𝐿 ∈ (1..^(♯‘𝑊))) → ((𝑊 cyclShift 𝐿) = 𝑊 → (𝑊 cyclShift 𝐿) ≠ 𝑊))
9594com12 32 . 2 ((𝑊 cyclShift 𝐿) = 𝑊 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) ∧ 𝐿 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝐿) ≠ 𝑊))
96 ax-1 6 . 2 ((𝑊 cyclShift 𝐿) ≠ 𝑊 → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) ∧ 𝐿 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝐿) ≠ 𝑊))
9795, 96pm2.61ine 3025 1 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) ∧ 𝐿 ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift 𝐿) ≠ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3o 1086  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   < clt 11295  cn 12266  cz 12613  ...cfz 13547  ..^cfzo 13694   mod cmo 13909  chash 14369  Word cword 14552   repeatS creps 14806   cyclShift ccsh 14826  cprime 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-word 14553  df-concat 14609  df-substr 14679  df-pfx 14709  df-reps 14807  df-csh 14827  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709  df-phi 16803
This theorem is referenced by:  cshwshashlem2  17134
  Copyright terms: Public domain W3C validator