| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3optocl | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.) |
| Ref | Expression |
|---|---|
| 3optocl.1 | ⊢ 𝑅 = (𝐷 × 𝐹) |
| 3optocl.2 | ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) |
| 3optocl.3 | ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (𝜓 ↔ 𝜒)) |
| 3optocl.4 | ⊢ (〈𝑣, 𝑢〉 = 𝐶 → (𝜒 ↔ 𝜃)) |
| 3optocl.5 | ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐹) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐹) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹)) → 𝜑) |
| Ref | Expression |
|---|---|
| 3optocl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑅) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3optocl.1 | . . . 4 ⊢ 𝑅 = (𝐷 × 𝐹) | |
| 2 | 3optocl.4 | . . . . 5 ⊢ (〈𝑣, 𝑢〉 = 𝐶 → (𝜒 ↔ 𝜃)) | |
| 3 | 2 | imbi2d 340 | . . . 4 ⊢ (〈𝑣, 𝑢〉 = 𝐶 → (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜒) ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜃))) |
| 4 | 3optocl.2 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | imbi2d 340 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → 𝜑) ↔ ((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → 𝜓))) |
| 6 | 3optocl.3 | . . . . . . 7 ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 7 | 6 | imbi2d 340 | . . . . . 6 ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → 𝜓) ↔ ((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → 𝜒))) |
| 8 | 3optocl.5 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐹) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐹) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹)) → 𝜑) | |
| 9 | 8 | 3expia 1121 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐹) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐹)) → ((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → 𝜑)) |
| 10 | 1, 5, 7, 9 | 2optocl 5755 | . . . . 5 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → ((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → 𝜒)) |
| 11 | 10 | com12 32 | . . . 4 ⊢ ((𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹) → ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜒)) |
| 12 | 1, 3, 11 | optocl 5754 | . . 3 ⊢ (𝐶 ∈ 𝑅 → ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜃)) |
| 13 | 12 | impcom 407 | . 2 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) ∧ 𝐶 ∈ 𝑅) → 𝜃) |
| 14 | 13 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑅) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4612 × cxp 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 df-xp 5665 |
| This theorem is referenced by: ecopovtrn 8839 |
| Copyright terms: Public domain | W3C validator |