Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atex2-0cOLDN Structured version   Visualization version   GIF version

Theorem 4atex2-0cOLDN 40077
Description: Same as 4atex2 40074 except that 𝑆 and 𝑇 are zero. TODO: do we need this one or 4atex2-0aOLDN 40075 or 4atex2-0bOLDN 40076? (Contributed by NM, 27-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
4that.l = (le‘𝐾)
4that.j = (join‘𝐾)
4that.a 𝐴 = (Atoms‘𝐾)
4that.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
4atex2-0cOLDN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄𝑇 = (0.‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑆 𝑧) = (𝑇 𝑧)))
Distinct variable groups:   𝑧,𝑟,𝐴   𝐻,𝑟   ,𝑟,𝑧   𝐾,𝑟,𝑧   ,𝑟,𝑧   𝑃,𝑟,𝑧   𝑄,𝑟,𝑧   𝑆,𝑟,𝑧   𝑊,𝑟,𝑧   𝑇,𝑟,𝑧   𝑧,𝐻

Proof of Theorem 4atex2-0cOLDN
StepHypRef Expression
1 simp21l 1291 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄𝑇 = (0.‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝐴)
2 simp21r 1292 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄𝑇 = (0.‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑃 𝑊)
3 simp23 1209 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄𝑇 = (0.‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑆 = (0.‘𝐾))
43oveq1d 7453 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄𝑇 = (0.‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑆 𝑃) = ((0.‘𝐾) 𝑃))
5 simp32 1211 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄𝑇 = (0.‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑇 = (0.‘𝐾))
65oveq1d 7453 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄𝑇 = (0.‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑇 𝑃) = ((0.‘𝐾) 𝑃))
74, 6eqtr4d 2780 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄𝑇 = (0.‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑆 𝑃) = (𝑇 𝑃))
8 breq1 5154 . . . . 5 (𝑧 = 𝑃 → (𝑧 𝑊𝑃 𝑊))
98notbid 318 . . . 4 (𝑧 = 𝑃 → (¬ 𝑧 𝑊 ↔ ¬ 𝑃 𝑊))
10 oveq2 7446 . . . . 5 (𝑧 = 𝑃 → (𝑆 𝑧) = (𝑆 𝑃))
11 oveq2 7446 . . . . 5 (𝑧 = 𝑃 → (𝑇 𝑧) = (𝑇 𝑃))
1210, 11eqeq12d 2753 . . . 4 (𝑧 = 𝑃 → ((𝑆 𝑧) = (𝑇 𝑧) ↔ (𝑆 𝑃) = (𝑇 𝑃)))
139, 12anbi12d 632 . . 3 (𝑧 = 𝑃 → ((¬ 𝑧 𝑊 ∧ (𝑆 𝑧) = (𝑇 𝑧)) ↔ (¬ 𝑃 𝑊 ∧ (𝑆 𝑃) = (𝑇 𝑃))))
1413rspcev 3625 . 2 ((𝑃𝐴 ∧ (¬ 𝑃 𝑊 ∧ (𝑆 𝑃) = (𝑇 𝑃))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑆 𝑧) = (𝑇 𝑧)))
151, 2, 7, 14syl12anc 837 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄𝑇 = (0.‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑆 𝑧) = (𝑇 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1539  wcel 2108  wne 2940  wrex 3070   class class class wbr 5151  cfv 6569  (class class class)co 7438  lecple 17314  joincjn 18378  0.cp0 18490  Atomscatm 39259  HLchlt 39346  LHypclh 39981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-iota 6522  df-fv 6577  df-ov 7441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator