Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atex2-0aOLDN Structured version   Visualization version   GIF version

Theorem 4atex2-0aOLDN 38937
Description: Same as 4atex2 38936 except that 𝑆 is zero. (Contributed by NM, 27-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
4that.l ≀ = (leβ€˜πΎ)
4that.j ∨ = (joinβ€˜πΎ)
4that.a 𝐴 = (Atomsβ€˜πΎ)
4that.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
4atex2-0aOLDN (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑆 ∨ 𝑧) = (𝑇 ∨ 𝑧)))
Distinct variable groups:   𝑧,π‘Ÿ,𝐴   𝐻,π‘Ÿ   ∨ ,π‘Ÿ,𝑧   𝐾,π‘Ÿ,𝑧   ≀ ,π‘Ÿ,𝑧   𝑃,π‘Ÿ,𝑧   𝑄,π‘Ÿ,𝑧   𝑆,π‘Ÿ,𝑧   π‘Š,π‘Ÿ,𝑧   𝑇,π‘Ÿ,𝑧
Allowed substitution hint:   𝐻(𝑧)

Proof of Theorem 4atex2-0aOLDN
StepHypRef Expression
1 simp32l 1298 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑇 ∈ 𝐴)
2 simp32r 1299 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ Β¬ 𝑇 ≀ π‘Š)
3 simp1l 1197 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐾 ∈ HL)
4 hlol 38219 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
53, 4syl 17 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐾 ∈ OL)
6 eqid 2732 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
7 4that.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
86, 7atbase 38147 . . . . 5 (𝑇 ∈ 𝐴 β†’ 𝑇 ∈ (Baseβ€˜πΎ))
91, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑇 ∈ (Baseβ€˜πΎ))
10 4that.j . . . . 5 ∨ = (joinβ€˜πΎ)
11 eqid 2732 . . . . 5 (0.β€˜πΎ) = (0.β€˜πΎ)
126, 10, 11olj02 38084 . . . 4 ((𝐾 ∈ OL ∧ 𝑇 ∈ (Baseβ€˜πΎ)) β†’ ((0.β€˜πΎ) ∨ 𝑇) = 𝑇)
135, 9, 12syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((0.β€˜πΎ) ∨ 𝑇) = 𝑇)
14 simp23 1208 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑆 = (0.β€˜πΎ))
1514oveq1d 7420 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑆 ∨ 𝑇) = ((0.β€˜πΎ) ∨ 𝑇))
1610, 7hlatjidm 38227 . . . 4 ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴) β†’ (𝑇 ∨ 𝑇) = 𝑇)
173, 1, 16syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑇 ∨ 𝑇) = 𝑇)
1813, 15, 173eqtr4d 2782 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑆 ∨ 𝑇) = (𝑇 ∨ 𝑇))
19 breq1 5150 . . . . 5 (𝑧 = 𝑇 β†’ (𝑧 ≀ π‘Š ↔ 𝑇 ≀ π‘Š))
2019notbid 317 . . . 4 (𝑧 = 𝑇 β†’ (Β¬ 𝑧 ≀ π‘Š ↔ Β¬ 𝑇 ≀ π‘Š))
21 oveq2 7413 . . . . 5 (𝑧 = 𝑇 β†’ (𝑆 ∨ 𝑧) = (𝑆 ∨ 𝑇))
22 oveq2 7413 . . . . 5 (𝑧 = 𝑇 β†’ (𝑇 ∨ 𝑧) = (𝑇 ∨ 𝑇))
2321, 22eqeq12d 2748 . . . 4 (𝑧 = 𝑇 β†’ ((𝑆 ∨ 𝑧) = (𝑇 ∨ 𝑧) ↔ (𝑆 ∨ 𝑇) = (𝑇 ∨ 𝑇)))
2420, 23anbi12d 631 . . 3 (𝑧 = 𝑇 β†’ ((Β¬ 𝑧 ≀ π‘Š ∧ (𝑆 ∨ 𝑧) = (𝑇 ∨ 𝑧)) ↔ (Β¬ 𝑇 ≀ π‘Š ∧ (𝑆 ∨ 𝑇) = (𝑇 ∨ 𝑇))))
2524rspcev 3612 . 2 ((𝑇 ∈ 𝐴 ∧ (Β¬ 𝑇 ≀ π‘Š ∧ (𝑆 ∨ 𝑇) = (𝑇 ∨ 𝑇))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑆 ∨ 𝑧) = (𝑇 ∨ 𝑧)))
261, 2, 18, 25syl12anc 835 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑆 ∨ 𝑧) = (𝑇 ∨ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  0.cp0 18372  OLcol 38032  Atomscatm 38121  HLchlt 38208  LHypclh 38843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-oposet 38034  df-ol 38036  df-oml 38037  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209
This theorem is referenced by:  4atex2-0bOLDN  38938
  Copyright terms: Public domain W3C validator