Proof of Theorem 4atex2-0aOLDN
Step | Hyp | Ref
| Expression |
1 | | simp32l 1296 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑇 ∈ 𝐴) |
2 | | simp32r 1297 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ¬ 𝑇 ≤ 𝑊) |
3 | | simp1l 1195 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝐾 ∈ HL) |
4 | | hlol 37302 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
5 | 3, 4 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝐾 ∈ OL) |
6 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
7 | | 4that.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
8 | 6, 7 | atbase 37230 |
. . . . 5
⊢ (𝑇 ∈ 𝐴 → 𝑇 ∈ (Base‘𝐾)) |
9 | 1, 8 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑇 ∈ (Base‘𝐾)) |
10 | | 4that.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
11 | | eqid 2738 |
. . . . 5
⊢
(0.‘𝐾) =
(0.‘𝐾) |
12 | 6, 10, 11 | olj02 37167 |
. . . 4
⊢ ((𝐾 ∈ OL ∧ 𝑇 ∈ (Base‘𝐾)) → ((0.‘𝐾) ∨ 𝑇) = 𝑇) |
13 | 5, 9, 12 | syl2anc 583 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((0.‘𝐾) ∨ 𝑇) = 𝑇) |
14 | | simp23 1206 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑆 = (0.‘𝐾)) |
15 | 14 | oveq1d 7270 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝑆 ∨ 𝑇) = ((0.‘𝐾) ∨ 𝑇)) |
16 | 10, 7 | hlatjidm 37310 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴) → (𝑇 ∨ 𝑇) = 𝑇) |
17 | 3, 1, 16 | syl2anc 583 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝑇 ∨ 𝑇) = 𝑇) |
18 | 13, 15, 17 | 3eqtr4d 2788 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝑆 ∨ 𝑇) = (𝑇 ∨ 𝑇)) |
19 | | breq1 5073 |
. . . . 5
⊢ (𝑧 = 𝑇 → (𝑧 ≤ 𝑊 ↔ 𝑇 ≤ 𝑊)) |
20 | 19 | notbid 317 |
. . . 4
⊢ (𝑧 = 𝑇 → (¬ 𝑧 ≤ 𝑊 ↔ ¬ 𝑇 ≤ 𝑊)) |
21 | | oveq2 7263 |
. . . . 5
⊢ (𝑧 = 𝑇 → (𝑆 ∨ 𝑧) = (𝑆 ∨ 𝑇)) |
22 | | oveq2 7263 |
. . . . 5
⊢ (𝑧 = 𝑇 → (𝑇 ∨ 𝑧) = (𝑇 ∨ 𝑇)) |
23 | 21, 22 | eqeq12d 2754 |
. . . 4
⊢ (𝑧 = 𝑇 → ((𝑆 ∨ 𝑧) = (𝑇 ∨ 𝑧) ↔ (𝑆 ∨ 𝑇) = (𝑇 ∨ 𝑇))) |
24 | 20, 23 | anbi12d 630 |
. . 3
⊢ (𝑧 = 𝑇 → ((¬ 𝑧 ≤ 𝑊 ∧ (𝑆 ∨ 𝑧) = (𝑇 ∨ 𝑧)) ↔ (¬ 𝑇 ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) = (𝑇 ∨ 𝑇)))) |
25 | 24 | rspcev 3552 |
. 2
⊢ ((𝑇 ∈ 𝐴 ∧ (¬ 𝑇 ≤ 𝑊 ∧ (𝑆 ∨ 𝑇) = (𝑇 ∨ 𝑇))) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑆 ∨ 𝑧) = (𝑇 ∨ 𝑧))) |
26 | 1, 2, 18, 25 | syl12anc 833 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ∃𝑧 ∈ 𝐴 (¬ 𝑧 ≤ 𝑊 ∧ (𝑆 ∨ 𝑧) = (𝑇 ∨ 𝑧))) |