Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atex2-0aOLDN Structured version   Visualization version   GIF version

Theorem 4atex2-0aOLDN 40067
Description: Same as 4atex2 40066 except that 𝑆 is zero. (Contributed by NM, 27-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
4that.l = (le‘𝐾)
4that.j = (join‘𝐾)
4that.a 𝐴 = (Atoms‘𝐾)
4that.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
4atex2-0aOLDN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑆 𝑧) = (𝑇 𝑧)))
Distinct variable groups:   𝑧,𝑟,𝐴   𝐻,𝑟   ,𝑟,𝑧   𝐾,𝑟,𝑧   ,𝑟,𝑧   𝑃,𝑟,𝑧   𝑄,𝑟,𝑧   𝑆,𝑟,𝑧   𝑊,𝑟,𝑧   𝑇,𝑟,𝑧
Allowed substitution hint:   𝐻(𝑧)

Proof of Theorem 4atex2-0aOLDN
StepHypRef Expression
1 simp32l 1299 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑇𝐴)
2 simp32r 1300 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑇 𝑊)
3 simp1l 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ HL)
4 hlol 39349 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OL)
53, 4syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ OL)
6 eqid 2730 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 4that.a . . . . . 6 𝐴 = (Atoms‘𝐾)
86, 7atbase 39277 . . . . 5 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
91, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑇 ∈ (Base‘𝐾))
10 4that.j . . . . 5 = (join‘𝐾)
11 eqid 2730 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
126, 10, 11olj02 39214 . . . 4 ((𝐾 ∈ OL ∧ 𝑇 ∈ (Base‘𝐾)) → ((0.‘𝐾) 𝑇) = 𝑇)
135, 9, 12syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((0.‘𝐾) 𝑇) = 𝑇)
14 simp23 1209 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑆 = (0.‘𝐾))
1514oveq1d 7404 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑆 𝑇) = ((0.‘𝐾) 𝑇))
1610, 7hlatjidm 39357 . . . 4 ((𝐾 ∈ HL ∧ 𝑇𝐴) → (𝑇 𝑇) = 𝑇)
173, 1, 16syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑇 𝑇) = 𝑇)
1813, 15, 173eqtr4d 2775 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑆 𝑇) = (𝑇 𝑇))
19 breq1 5112 . . . . 5 (𝑧 = 𝑇 → (𝑧 𝑊𝑇 𝑊))
2019notbid 318 . . . 4 (𝑧 = 𝑇 → (¬ 𝑧 𝑊 ↔ ¬ 𝑇 𝑊))
21 oveq2 7397 . . . . 5 (𝑧 = 𝑇 → (𝑆 𝑧) = (𝑆 𝑇))
22 oveq2 7397 . . . . 5 (𝑧 = 𝑇 → (𝑇 𝑧) = (𝑇 𝑇))
2321, 22eqeq12d 2746 . . . 4 (𝑧 = 𝑇 → ((𝑆 𝑧) = (𝑇 𝑧) ↔ (𝑆 𝑇) = (𝑇 𝑇)))
2420, 23anbi12d 632 . . 3 (𝑧 = 𝑇 → ((¬ 𝑧 𝑊 ∧ (𝑆 𝑧) = (𝑇 𝑧)) ↔ (¬ 𝑇 𝑊 ∧ (𝑆 𝑇) = (𝑇 𝑇))))
2524rspcev 3591 . 2 ((𝑇𝐴 ∧ (¬ 𝑇 𝑊 ∧ (𝑆 𝑇) = (𝑇 𝑇))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑆 𝑧) = (𝑇 𝑧)))
261, 2, 18, 25syl12anc 836 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑆 𝑧) = (𝑇 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5109  cfv 6513  (class class class)co 7389  Basecbs 17185  lecple 17233  joincjn 18278  0.cp0 18388  OLcol 39162  Atomscatm 39251  HLchlt 39338  LHypclh 39973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-proset 18261  df-poset 18280  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-lat 18397  df-oposet 39164  df-ol 39166  df-oml 39167  df-ats 39255  df-atl 39286  df-cvlat 39310  df-hlat 39339
This theorem is referenced by:  4atex2-0bOLDN  40068
  Copyright terms: Public domain W3C validator