Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atex2-0aOLDN Structured version   Visualization version   GIF version

Theorem 4atex2-0aOLDN 39603
Description: Same as 4atex2 39602 except that 𝑆 is zero. (Contributed by NM, 27-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
4that.l ≀ = (leβ€˜πΎ)
4that.j ∨ = (joinβ€˜πΎ)
4that.a 𝐴 = (Atomsβ€˜πΎ)
4that.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
4atex2-0aOLDN (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑆 ∨ 𝑧) = (𝑇 ∨ 𝑧)))
Distinct variable groups:   𝑧,π‘Ÿ,𝐴   𝐻,π‘Ÿ   ∨ ,π‘Ÿ,𝑧   𝐾,π‘Ÿ,𝑧   ≀ ,π‘Ÿ,𝑧   𝑃,π‘Ÿ,𝑧   𝑄,π‘Ÿ,𝑧   𝑆,π‘Ÿ,𝑧   π‘Š,π‘Ÿ,𝑧   𝑇,π‘Ÿ,𝑧
Allowed substitution hint:   𝐻(𝑧)

Proof of Theorem 4atex2-0aOLDN
StepHypRef Expression
1 simp32l 1295 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑇 ∈ 𝐴)
2 simp32r 1296 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ Β¬ 𝑇 ≀ π‘Š)
3 simp1l 1194 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐾 ∈ HL)
4 hlol 38885 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
53, 4syl 17 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝐾 ∈ OL)
6 eqid 2725 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
7 4that.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
86, 7atbase 38813 . . . . 5 (𝑇 ∈ 𝐴 β†’ 𝑇 ∈ (Baseβ€˜πΎ))
91, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑇 ∈ (Baseβ€˜πΎ))
10 4that.j . . . . 5 ∨ = (joinβ€˜πΎ)
11 eqid 2725 . . . . 5 (0.β€˜πΎ) = (0.β€˜πΎ)
126, 10, 11olj02 38750 . . . 4 ((𝐾 ∈ OL ∧ 𝑇 ∈ (Baseβ€˜πΎ)) β†’ ((0.β€˜πΎ) ∨ 𝑇) = 𝑇)
135, 9, 12syl2anc 582 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ ((0.β€˜πΎ) ∨ 𝑇) = 𝑇)
14 simp23 1205 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ 𝑆 = (0.β€˜πΎ))
1514oveq1d 7428 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑆 ∨ 𝑇) = ((0.β€˜πΎ) ∨ 𝑇))
1610, 7hlatjidm 38893 . . . 4 ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴) β†’ (𝑇 ∨ 𝑇) = 𝑇)
173, 1, 16syl2anc 582 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑇 ∨ 𝑇) = 𝑇)
1813, 15, 173eqtr4d 2775 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ (𝑆 ∨ 𝑇) = (𝑇 ∨ 𝑇))
19 breq1 5147 . . . . 5 (𝑧 = 𝑇 β†’ (𝑧 ≀ π‘Š ↔ 𝑇 ≀ π‘Š))
2019notbid 317 . . . 4 (𝑧 = 𝑇 β†’ (Β¬ 𝑧 ≀ π‘Š ↔ Β¬ 𝑇 ≀ π‘Š))
21 oveq2 7421 . . . . 5 (𝑧 = 𝑇 β†’ (𝑆 ∨ 𝑧) = (𝑆 ∨ 𝑇))
22 oveq2 7421 . . . . 5 (𝑧 = 𝑇 β†’ (𝑇 ∨ 𝑧) = (𝑇 ∨ 𝑇))
2321, 22eqeq12d 2741 . . . 4 (𝑧 = 𝑇 β†’ ((𝑆 ∨ 𝑧) = (𝑇 ∨ 𝑧) ↔ (𝑆 ∨ 𝑇) = (𝑇 ∨ 𝑇)))
2420, 23anbi12d 630 . . 3 (𝑧 = 𝑇 β†’ ((Β¬ 𝑧 ≀ π‘Š ∧ (𝑆 ∨ 𝑧) = (𝑇 ∨ 𝑧)) ↔ (Β¬ 𝑇 ≀ π‘Š ∧ (𝑆 ∨ 𝑇) = (𝑇 ∨ 𝑇))))
2524rspcev 3603 . 2 ((𝑇 ∈ 𝐴 ∧ (Β¬ 𝑇 ≀ π‘Š ∧ (𝑆 ∨ 𝑇) = (𝑇 ∨ 𝑇))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑆 ∨ 𝑧) = (𝑇 ∨ 𝑧)))
261, 2, 18, 25syl12anc 835 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑆 = (0.β€˜πΎ)) ∧ (𝑃 β‰  𝑄 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))) β†’ βˆƒπ‘§ ∈ 𝐴 (Β¬ 𝑧 ≀ π‘Š ∧ (𝑆 ∨ 𝑧) = (𝑇 ∨ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆƒwrex 3060   class class class wbr 5144  β€˜cfv 6543  (class class class)co 7413  Basecbs 17174  lecple 17234  joincjn 18297  0.cp0 18409  OLcol 38698  Atomscatm 38787  HLchlt 38874  LHypclh 39509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-proset 18281  df-poset 18299  df-lub 18332  df-glb 18333  df-join 18334  df-meet 18335  df-p0 18411  df-lat 18418  df-oposet 38700  df-ol 38702  df-oml 38703  df-ats 38791  df-atl 38822  df-cvlat 38846  df-hlat 38875
This theorem is referenced by:  4atex2-0bOLDN  39604
  Copyright terms: Public domain W3C validator