Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp21r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp21r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1r 1197 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant2 1133 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: modexp 13941 segconeu 34299 4atlem10 37606 lplncvrlvol2 37615 4atex 38076 4atex2-0cOLDN 38080 cdleme0moN 38225 cdleme16e 38282 cdleme17d1 38289 cdleme18d 38295 cdleme19d 38306 cdleme20f 38314 cdleme20g 38315 cdleme21ct 38329 cdleme22aa 38339 cdleme22cN 38342 cdleme22d 38343 cdleme22e 38344 cdleme22eALTN 38345 cdleme26e 38359 cdleme32e 38445 cdleme32f 38446 cdlemg4 38617 cdlemg18d 38681 cdlemg18 38682 cdlemg19a 38683 cdlemg19 38684 cdlemg21 38686 cdlemg33b0 38701 cdlemk5 38836 cdlemk6 38837 cdlemk7 38848 cdlemk11 38849 cdlemk12 38850 cdlemk21N 38873 cdlemk20 38874 cdlemk28-3 38908 cdlemk34 38910 cdlemkfid3N 38925 cdlemk55u1 38965 |
Copyright terms: Public domain | W3C validator |