| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp21r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp21r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1r 1199 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: modexp 14147 segconeu 36076 4atlem10 39726 lplncvrlvol2 39735 4atex 40196 4atex2-0cOLDN 40200 cdleme0moN 40345 cdleme16e 40402 cdleme17d1 40409 cdleme18d 40415 cdleme19d 40426 cdleme20f 40434 cdleme20g 40435 cdleme21ct 40449 cdleme22aa 40459 cdleme22cN 40462 cdleme22d 40463 cdleme22e 40464 cdleme22eALTN 40465 cdleme26e 40479 cdleme32e 40565 cdleme32f 40566 cdlemg4 40737 cdlemg18d 40801 cdlemg18 40802 cdlemg19a 40803 cdlemg19 40804 cdlemg21 40806 cdlemg33b0 40821 cdlemk5 40956 cdlemk6 40957 cdlemk7 40968 cdlemk11 40969 cdlemk12 40970 cdlemk21N 40993 cdlemk20 40994 cdlemk28-3 41028 cdlemk34 41030 cdlemkfid3N 41045 cdlemk55u1 41085 |
| Copyright terms: Public domain | W3C validator |