| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp21r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp21r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1r 1199 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: modexp 14163 segconeu 35987 4atlem10 39588 lplncvrlvol2 39597 4atex 40058 4atex2-0cOLDN 40062 cdleme0moN 40207 cdleme16e 40264 cdleme17d1 40271 cdleme18d 40277 cdleme19d 40288 cdleme20f 40296 cdleme20g 40297 cdleme21ct 40311 cdleme22aa 40321 cdleme22cN 40324 cdleme22d 40325 cdleme22e 40326 cdleme22eALTN 40327 cdleme26e 40341 cdleme32e 40427 cdleme32f 40428 cdlemg4 40599 cdlemg18d 40663 cdlemg18 40664 cdlemg19a 40665 cdlemg19 40666 cdlemg21 40668 cdlemg33b0 40683 cdlemk5 40818 cdlemk6 40819 cdlemk7 40830 cdlemk11 40831 cdlemk12 40832 cdlemk21N 40855 cdlemk20 40856 cdlemk28-3 40890 cdlemk34 40892 cdlemkfid3N 40907 cdlemk55u1 40947 |
| Copyright terms: Public domain | W3C validator |