Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp21r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp21r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1r 1196 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant2 1132 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: modexp 13934 segconeu 34292 4atlem10 37599 lplncvrlvol2 37608 4atex 38069 4atex2-0cOLDN 38073 cdleme0moN 38218 cdleme16e 38275 cdleme17d1 38282 cdleme18d 38288 cdleme19d 38299 cdleme20f 38307 cdleme20g 38308 cdleme21ct 38322 cdleme22aa 38332 cdleme22cN 38335 cdleme22d 38336 cdleme22e 38337 cdleme22eALTN 38338 cdleme26e 38352 cdleme32e 38438 cdleme32f 38439 cdlemg4 38610 cdlemg18d 38674 cdlemg18 38675 cdlemg19a 38676 cdlemg19 38677 cdlemg21 38679 cdlemg33b0 38694 cdlemk5 38829 cdlemk6 38830 cdlemk7 38841 cdlemk11 38842 cdlemk12 38843 cdlemk21N 38866 cdlemk20 38867 cdlemk28-3 38901 cdlemk34 38903 cdlemkfid3N 38918 cdlemk55u1 38958 |
Copyright terms: Public domain | W3C validator |