| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp21r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp21r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1r 1199 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: modexp 14210 segconeu 36006 4atlem10 39607 lplncvrlvol2 39616 4atex 40077 4atex2-0cOLDN 40081 cdleme0moN 40226 cdleme16e 40283 cdleme17d1 40290 cdleme18d 40296 cdleme19d 40307 cdleme20f 40315 cdleme20g 40316 cdleme21ct 40330 cdleme22aa 40340 cdleme22cN 40343 cdleme22d 40344 cdleme22e 40345 cdleme22eALTN 40346 cdleme26e 40360 cdleme32e 40446 cdleme32f 40447 cdlemg4 40618 cdlemg18d 40682 cdlemg18 40683 cdlemg19a 40684 cdlemg19 40685 cdlemg21 40687 cdlemg33b0 40702 cdlemk5 40837 cdlemk6 40838 cdlemk7 40849 cdlemk11 40850 cdlemk12 40851 cdlemk21N 40874 cdlemk20 40875 cdlemk28-3 40909 cdlemk34 40911 cdlemkfid3N 40926 cdlemk55u1 40966 |
| Copyright terms: Public domain | W3C validator |