![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp21r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp21r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1r 1197 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant2 1133 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: modexp 14274 segconeu 35993 4atlem10 39589 lplncvrlvol2 39598 4atex 40059 4atex2-0cOLDN 40063 cdleme0moN 40208 cdleme16e 40265 cdleme17d1 40272 cdleme18d 40278 cdleme19d 40289 cdleme20f 40297 cdleme20g 40298 cdleme21ct 40312 cdleme22aa 40322 cdleme22cN 40325 cdleme22d 40326 cdleme22e 40327 cdleme22eALTN 40328 cdleme26e 40342 cdleme32e 40428 cdleme32f 40429 cdlemg4 40600 cdlemg18d 40664 cdlemg18 40665 cdlemg19a 40666 cdlemg19 40667 cdlemg21 40669 cdlemg33b0 40684 cdlemk5 40819 cdlemk6 40820 cdlemk7 40831 cdlemk11 40832 cdlemk12 40833 cdlemk21N 40856 cdlemk20 40857 cdlemk28-3 40891 cdlemk34 40893 cdlemkfid3N 40908 cdlemk55u1 40948 |
Copyright terms: Public domain | W3C validator |