| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp21r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp21r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1r 1199 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: modexp 14256 segconeu 36029 4atlem10 39625 lplncvrlvol2 39634 4atex 40095 4atex2-0cOLDN 40099 cdleme0moN 40244 cdleme16e 40301 cdleme17d1 40308 cdleme18d 40314 cdleme19d 40325 cdleme20f 40333 cdleme20g 40334 cdleme21ct 40348 cdleme22aa 40358 cdleme22cN 40361 cdleme22d 40362 cdleme22e 40363 cdleme22eALTN 40364 cdleme26e 40378 cdleme32e 40464 cdleme32f 40465 cdlemg4 40636 cdlemg18d 40700 cdlemg18 40701 cdlemg19a 40702 cdlemg19 40703 cdlemg21 40705 cdlemg33b0 40720 cdlemk5 40855 cdlemk6 40856 cdlemk7 40867 cdlemk11 40868 cdlemk12 40869 cdlemk21N 40892 cdlemk20 40893 cdlemk28-3 40927 cdlemk34 40929 cdlemkfid3N 40944 cdlemk55u1 40984 |
| Copyright terms: Public domain | W3C validator |