![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp21r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp21r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1r 1198 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: modexp 14287 segconeu 35975 4atlem10 39563 lplncvrlvol2 39572 4atex 40033 4atex2-0cOLDN 40037 cdleme0moN 40182 cdleme16e 40239 cdleme17d1 40246 cdleme18d 40252 cdleme19d 40263 cdleme20f 40271 cdleme20g 40272 cdleme21ct 40286 cdleme22aa 40296 cdleme22cN 40299 cdleme22d 40300 cdleme22e 40301 cdleme22eALTN 40302 cdleme26e 40316 cdleme32e 40402 cdleme32f 40403 cdlemg4 40574 cdlemg18d 40638 cdlemg18 40639 cdlemg19a 40640 cdlemg19 40641 cdlemg21 40643 cdlemg33b0 40658 cdlemk5 40793 cdlemk6 40794 cdlemk7 40805 cdlemk11 40806 cdlemk12 40807 cdlemk21N 40830 cdlemk20 40831 cdlemk28-3 40865 cdlemk34 40867 cdlemkfid3N 40882 cdlemk55u1 40922 |
Copyright terms: Public domain | W3C validator |