| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp21r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp21r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1r 1199 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: modexp 14203 segconeu 35999 4atlem10 39600 lplncvrlvol2 39609 4atex 40070 4atex2-0cOLDN 40074 cdleme0moN 40219 cdleme16e 40276 cdleme17d1 40283 cdleme18d 40289 cdleme19d 40300 cdleme20f 40308 cdleme20g 40309 cdleme21ct 40323 cdleme22aa 40333 cdleme22cN 40336 cdleme22d 40337 cdleme22e 40338 cdleme22eALTN 40339 cdleme26e 40353 cdleme32e 40439 cdleme32f 40440 cdlemg4 40611 cdlemg18d 40675 cdlemg18 40676 cdlemg19a 40677 cdlemg19 40678 cdlemg21 40680 cdlemg33b0 40695 cdlemk5 40830 cdlemk6 40831 cdlemk7 40842 cdlemk11 40843 cdlemk12 40844 cdlemk21N 40867 cdlemk20 40868 cdlemk28-3 40902 cdlemk34 40904 cdlemkfid3N 40919 cdlemk55u1 40959 |
| Copyright terms: Public domain | W3C validator |