| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp21r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp21r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1r 1199 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: modexp 14145 segconeu 36051 4atlem10 39651 lplncvrlvol2 39660 4atex 40121 4atex2-0cOLDN 40125 cdleme0moN 40270 cdleme16e 40327 cdleme17d1 40334 cdleme18d 40340 cdleme19d 40351 cdleme20f 40359 cdleme20g 40360 cdleme21ct 40374 cdleme22aa 40384 cdleme22cN 40387 cdleme22d 40388 cdleme22e 40389 cdleme22eALTN 40390 cdleme26e 40404 cdleme32e 40490 cdleme32f 40491 cdlemg4 40662 cdlemg18d 40726 cdlemg18 40727 cdlemg19a 40728 cdlemg19 40729 cdlemg21 40731 cdlemg33b0 40746 cdlemk5 40881 cdlemk6 40882 cdlemk7 40893 cdlemk11 40894 cdlemk12 40895 cdlemk21N 40918 cdlemk20 40919 cdlemk28-3 40953 cdlemk34 40955 cdlemkfid3N 40970 cdlemk55u1 41010 |
| Copyright terms: Public domain | W3C validator |