HomeHome Metamath Proof Explorer
Theorem List (p. 397 of 470)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29658)
  Hilbert Space Explorer  Hilbert Space Explorer
(29659-31181)
  Users' Mathboxes  Users' Mathboxes
(31182-46997)
 

Theorem List for Metamath Proof Explorer - 39601-39700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdib2dim 39601 Extend dia2dim 39435 to partial isomorphism B. (Contributed by NM, 22-Sep-2014.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ (𝑃 ∈ 𝐴 ∧ 𝑃 ≀ π‘Š))    &   (πœ‘ β†’ (𝑄 ∈ 𝐴 ∧ 𝑄 ≀ π‘Š))    β‡’   (πœ‘ β†’ (πΌβ€˜(𝑃 ∨ 𝑄)) βŠ† ((πΌβ€˜π‘ƒ) βŠ• (πΌβ€˜π‘„)))
 
Theoremdih2dimb 39602 Extend dib2dim 39601 to isomorphism H. (Contributed by NM, 22-Sep-2014.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ (𝑃 ∈ 𝐴 ∧ 𝑃 ≀ π‘Š))    &   (πœ‘ β†’ (𝑄 ∈ 𝐴 ∧ 𝑄 ≀ π‘Š))    β‡’   (πœ‘ β†’ (πΌβ€˜(𝑃 ∨ 𝑄)) βŠ† ((πΌβ€˜π‘ƒ) βŠ• (πΌβ€˜π‘„)))
 
Theoremdih2dimbALTN 39603 Extend dia2dim 39435 to isomorphism H. (This version combines dib2dim 39601 and dih2dimb 39602 for shorter overall proof, but may be less easy to understand. TODO: decide which to use.) (Contributed by NM, 22-Sep-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ (𝑃 ∈ 𝐴 ∧ 𝑃 ≀ π‘Š))    &   (πœ‘ β†’ (𝑄 ∈ 𝐴 ∧ 𝑄 ≀ π‘Š))    β‡’   (πœ‘ β†’ (πΌβ€˜(𝑃 ∨ 𝑄)) βŠ† ((πΌβ€˜π‘ƒ) βŠ• (πΌβ€˜π‘„)))
 
Theoremdihopelvalcqat 39604* Ordered pair member of the partial isomorphism H for atom argument not under π‘Š. TODO: remove .t hypothesis. (Contributed by NM, 30-Mar-2014.)
≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   πΊ = (℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)    &   πΉ ∈ V    &   π‘† ∈ V    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘„) ↔ (𝐹 = (π‘†β€˜πΊ) ∧ 𝑆 ∈ 𝐸)))
 
Theoremdihvalcq2 39605 Value of isomorphism H for a lattice 𝐾 when Β¬ 𝑋 ≀ π‘Š, given auxiliary atom 𝑄. (Contributed by NM, 26-Sep-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ 𝑋)) β†’ (πΌβ€˜π‘‹) = ((πΌβ€˜π‘„) βŠ• (πΌβ€˜(𝑋 ∧ π‘Š))))
 
Theoremdihopelvalcpre 39606* Member of value of isomorphism H for a lattice 𝐾 when Β¬ 𝑋 ≀ π‘Š, given auxiliary atom 𝑄. TODO: refactor to be shorter and more understandable; add lemmas? (Contributed by NM, 13-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   πΊ = (℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)    &   πΉ ∈ V    &   π‘† ∈ V    &   π‘ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   πΆ = ((DIsoCβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    + = (+gβ€˜π‘ˆ)    &   π‘‰ = (LSubSpβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   π‘‚ = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (β„Ž ∈ 𝑇 ↦ ((π‘Žβ€˜β„Ž) ∘ (π‘β€˜β„Ž))))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑄 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘‹) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (π‘…β€˜(𝐹 ∘ β—‘(π‘†β€˜πΊ))) ≀ 𝑋)))
 
Theoremdihopelvalc 39607* Member of value of isomorphism H for a lattice 𝐾 when Β¬ 𝑋 ≀ π‘Š, given auxiliary atom 𝑄. (Contributed by NM, 13-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   πΊ = (℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)    &   πΉ ∈ V    &   π‘† ∈ V    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑄 ∨ (𝑋 ∧ π‘Š)) = 𝑋)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘‹) ↔ ((𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸) ∧ (π‘…β€˜(𝐹 ∘ β—‘(π‘†β€˜πΊ))) ≀ 𝑋)))
 
Theoremdihlss 39608 The value of isomorphism H is a subspace. (Contributed by NM, 6-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡) β†’ (πΌβ€˜π‘‹) ∈ 𝑆)
 
Theoremdihss 39609 The value of isomorphism H is a set of vectors. (Contributed by NM, 14-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡) β†’ (πΌβ€˜π‘‹) βŠ† 𝑉)
 
Theoremdihssxp 39610 An isomorphism H value is included in the vector space (expressed as 𝑇 Γ— 𝐸). (Contributed by NM, 26-Sep-2014.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    β‡’   (πœ‘ β†’ (πΌβ€˜π‘‹) βŠ† (𝑇 Γ— 𝐸))
 
Theoremdihopcl 39611 Closure of an ordered pair (vector) member of a value of isomorphism H. (Contributed by NM, 26-Sep-2014.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ ⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘‹))    β‡’   (πœ‘ β†’ (𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸))
 
TheoremxihopellsmN 39612* Ordered pair membership in a subspace sum of isomorphism H values. (Contributed by NM, 26-Sep-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   π΄ = (𝑠 ∈ 𝐸, 𝑑 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΏ = (LSubSpβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ (⟨𝐹, π‘†βŸ© ∈ ((πΌβ€˜π‘‹) βŠ• (πΌβ€˜π‘Œ)) ↔ βˆƒπ‘”βˆƒπ‘‘βˆƒβ„Žβˆƒπ‘’((βŸ¨π‘”, π‘‘βŸ© ∈ (πΌβ€˜π‘‹) ∧ βŸ¨β„Ž, π‘’βŸ© ∈ (πΌβ€˜π‘Œ)) ∧ (𝐹 = (𝑔 ∘ β„Ž) ∧ 𝑆 = (𝑑𝐴𝑒)))))
 
Theoremdihopellsm 39613* Ordered pair membership in a subspace sum of isomorphism H values. (Contributed by NM, 26-Sep-2014.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   π΄ = (𝑣 ∈ 𝐸, 𝑀 ∈ 𝐸 ↦ (𝑖 ∈ 𝑇 ↦ ((π‘£β€˜π‘–) ∘ (π‘€β€˜π‘–))))    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΏ = (LSubSpβ€˜π‘ˆ)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ (⟨𝐹, π‘†βŸ© ∈ ((πΌβ€˜π‘‹) βŠ• (πΌβ€˜π‘Œ)) ↔ βˆƒπ‘”βˆƒπ‘‘βˆƒβ„Žβˆƒπ‘’((βŸ¨π‘”, π‘‘βŸ© ∈ (πΌβ€˜π‘‹) ∧ βŸ¨β„Ž, π‘’βŸ© ∈ (πΌβ€˜π‘Œ)) ∧ (𝐹 = (𝑔 ∘ β„Ž) ∧ 𝑆 = (𝑑𝐴𝑒)))))
 
Theoremdihord6apre 39614* Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = π‘ž)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) ∧ (πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ)) β†’ 𝑋 ≀ π‘Œ)
 
Theoremdihord3 39615 The isomorphism H for a lattice 𝐾 is order-preserving in the region under co-atom π‘Š. (Contributed by NM, 6-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ↔ 𝑋 ≀ π‘Œ))
 
Theoremdihord4 39616 The isomorphism H for a lattice 𝐾 is order-preserving in the region not under co-atom π‘Š. TODO: reformat (π‘ž ∈ 𝐴 ∧ Β¬ π‘ž ≀ π‘Š) to eliminate adant*. (Contributed by NM, 6-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ Β¬ π‘Œ ≀ π‘Š)) β†’ ((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ↔ 𝑋 ≀ π‘Œ))
 
Theoremdihord5b 39617 Part of proof that isomorphism H is order-preserving. TODO: eliminate 3ad2ant1; combine with other way to have one lhpmcvr2 . (Contributed by NM, 7-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ Β¬ π‘Œ ≀ π‘Š)) ∧ 𝑋 ≀ π‘Œ) β†’ (πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ))
 
Theoremdihord6b 39618 Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 ≀ π‘Œ) β†’ (πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ))
 
Theoremdihord6a 39619 Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) ∧ (πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ)) β†’ 𝑋 ≀ π‘Œ)
 
Theoremdihord5apre 39620 Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ Β¬ π‘Œ ≀ π‘Š)) ∧ (πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ)) β†’ 𝑋 ≀ π‘Œ)
 
Theoremdihord5a 39621 Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ Β¬ π‘Œ ≀ π‘Š)) ∧ (πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ)) β†’ 𝑋 ≀ π‘Œ)
 
Theoremdihord 39622 The isomorphism H is order-preserving. Part of proof after Lemma N of [Crawley] p. 122 line 6. (Contributed by NM, 7-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ↔ 𝑋 ≀ π‘Œ))
 
Theoremdih11 39623 The isomorphism H is one-to-one. Part of proof after Lemma N of [Crawley] p. 122 line 6. (Contributed by NM, 7-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((πΌβ€˜π‘‹) = (πΌβ€˜π‘Œ) ↔ 𝑋 = π‘Œ))
 
Theoremdihf11lem 39624 Functionality of the isomorphism H. (Contributed by NM, 6-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘ˆ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐼:π΅βŸΆπ‘†)
 
Theoremdihf11 39625 The isomorphism H for a lattice 𝐾 is a one-to-one function. Part of proof after Lemma N of [Crawley] p. 122 line 6. (Contributed by NM, 7-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘ˆ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐼:𝐡–1-1→𝑆)
 
Theoremdihfn 39626 Functionality and domain of isomorphism H. (Contributed by NM, 9-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn 𝐡)
 
Theoremdihdm 39627 Domain of isomorphism H. (Contributed by NM, 9-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ dom 𝐼 = 𝐡)
 
Theoremdihcl 39628 Closure of isomorphism H. (Contributed by NM, 8-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡) β†’ (πΌβ€˜π‘‹) ∈ ran 𝐼)
 
Theoremdihcnvcl 39629 Closure of isomorphism H converse. (Contributed by NM, 8-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) β†’ (β—‘πΌβ€˜π‘‹) ∈ 𝐡)
 
Theoremdihcnvid1 39630 The converse isomorphism of an isomorphism. (Contributed by NM, 5-Aug-2014.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡) β†’ (β—‘πΌβ€˜(πΌβ€˜π‘‹)) = 𝑋)
 
Theoremdihcnvid2 39631 The isomorphism of a converse isomorphism. (Contributed by NM, 5-Aug-2014.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) β†’ (πΌβ€˜(β—‘πΌβ€˜π‘‹)) = 𝑋)
 
Theoremdihcnvord 39632 Ordering property for converse of isomorphism H. (Contributed by NM, 17-Aug-2014.)
≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &   (πœ‘ β†’ π‘Œ ∈ ran 𝐼)    β‡’   (πœ‘ β†’ ((β—‘πΌβ€˜π‘‹) ≀ (β—‘πΌβ€˜π‘Œ) ↔ 𝑋 βŠ† π‘Œ))
 
Theoremdihcnv11 39633 The converse of isomorphism H is one-to-one. (Contributed by NM, 17-Aug-2014.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    &   (πœ‘ β†’ π‘Œ ∈ ran 𝐼)    β‡’   (πœ‘ β†’ ((β—‘πΌβ€˜π‘‹) = (β—‘πΌβ€˜π‘Œ) ↔ 𝑋 = π‘Œ))
 
Theoremdihsslss 39634 The isomorphism H maps to subspaces. (Contributed by NM, 14-Mar-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘ˆ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ran 𝐼 βŠ† 𝑆)
 
Theoremdihrnlss 39635 The isomorphism H maps to subspaces. (Contributed by NM, 14-Mar-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) β†’ 𝑋 ∈ 𝑆)
 
Theoremdihrnss 39636 The isomorphism H maps to a set of vectors. (Contributed by NM, 14-Mar-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) β†’ 𝑋 βŠ† 𝑉)
 
Theoremdihvalrel 39637 The value of isomorphism H is a relation. (Contributed by NM, 9-Mar-2014.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ Rel (πΌβ€˜π‘‹))
 
Theoremdih0 39638 The value of isomorphism H at the lattice zero is the singleton of the zero vector i.e. the zero subspace. (Contributed by NM, 9-Mar-2014.)
0 = (0.β€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (0gβ€˜π‘ˆ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (πΌβ€˜ 0 ) = {𝑂})
 
Theoremdih0bN 39639 A lattice element is zero iff its isomorphism is the zero subspace. (Contributed by NM, 16-Aug-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    0 = (0.β€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘ = (0gβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 = 0 ↔ (πΌβ€˜π‘‹) = {𝑍}))
 
Theoremdih0vbN 39640 A vector is zero iff its span is the isomorphism of lattice zero. (Contributed by NM, 16-Aug-2014.) (New usage is discouraged.)
𝐻 = (LHypβ€˜πΎ)    &    0 = (0.β€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘ = (0gβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    β‡’   (πœ‘ β†’ (𝑋 = 𝑍 ↔ (π‘β€˜{𝑋}) = (πΌβ€˜ 0 )))
 
Theoremdih0cnv 39641 The isomorphism H converse value of the zero subspace is the lattice zero. (Contributed by NM, 19-Jun-2014.)
𝐻 = (LHypβ€˜πΎ)    &    0 = (0.β€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘ = (0gβ€˜π‘ˆ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (β—‘πΌβ€˜{𝑍}) = 0 )
 
Theoremdih0rn 39642 The zero subspace belongs to the range of isomorphism H. (Contributed by NM, 27-Apr-2014.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    0 = (0gβ€˜π‘ˆ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ { 0 } ∈ ran 𝐼)
 
Theoremdih0sb 39643 A subspace is zero iff the converse of its isomorphism is lattice zero. (Contributed by NM, 17-Aug-2014.)
𝐻 = (LHypβ€˜πΎ)    &    0 = (0.β€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘ = (0gβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑋 ∈ ran 𝐼)    β‡’   (πœ‘ β†’ (𝑋 = {𝑍} ↔ (β—‘πΌβ€˜π‘‹) = 0 ))
 
Theoremdih1 39644 The value of isomorphism H at the lattice unity is the set of all vectors. (Contributed by NM, 13-Mar-2014.)
1 = (1.β€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (πΌβ€˜ 1 ) = 𝑉)
 
Theoremdih1rn 39645 The full vector space belongs to the range of isomorphism H. (Contributed by NM, 19-Jun-2014.)
𝐻 = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝑉 ∈ ran 𝐼)
 
Theoremdih1cnv 39646 The isomorphism H converse value of the full vector space is the lattice one. (Contributed by NM, 19-Jun-2014.)
𝐻 = (LHypβ€˜πΎ)    &    1 = (1.β€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    β‡’   ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (β—‘πΌβ€˜π‘‰) = 1 )
 
TheoremdihwN 39647* Value of isomorphism H at the fiducial hyperplane π‘Š. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &    0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    β‡’   (πœ‘ β†’ (πΌβ€˜π‘Š) = (𝑇 Γ— { 0 }))
 
Theoremdihmeetlem1N 39648* Isomorphism H of a conjunction. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = π‘ž)    &    0 = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ (πΌβ€˜(𝑋 ∧ π‘Œ)) = ((πΌβ€˜π‘‹) ∩ (πΌβ€˜π‘Œ)))
 
Theoremdihglblem5apreN 39649* A conjunction property of isomorphism H. TODO: reduce antecedent size; general review for shorter proof. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = π‘ž)    &    0 = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜(𝑋 ∧ π‘Š)) = ((πΌβ€˜π‘‹) ∩ (πΌβ€˜π‘Š)))
 
Theoremdihglblem5aN 39650 A conjunction property of isomorphism H. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡) β†’ (πΌβ€˜(𝑋 ∧ π‘Š)) = ((πΌβ€˜π‘‹) ∩ (πΌβ€˜π‘Š)))
 
Theoremdihglblem2aN 39651* Lemma for isomorphism H of a GLB. (Contributed by NM, 19-Mar-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = {𝑒 ∈ 𝐡 ∣ βˆƒπ‘£ ∈ 𝑆 𝑒 = (𝑣 ∧ π‘Š)}    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ…)) β†’ 𝑇 β‰  βˆ…)
 
Theoremdihglblem2N 39652* The GLB of a set of lattice elements 𝑆 is the same as that of the set 𝑇 with elements of 𝑆 cut down to be under π‘Š. (Contributed by NM, 19-Mar-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = {𝑒 ∈ 𝐡 ∣ βˆƒπ‘£ ∈ 𝑆 𝑒 = (𝑣 ∧ π‘Š)}    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 βŠ† 𝐡 ∧ (πΊβ€˜π‘†) ≀ π‘Š) β†’ (πΊβ€˜π‘†) = (πΊβ€˜π‘‡))
 
Theoremdihglblem3N 39653* Isomorphism H of a lattice glb. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = {𝑒 ∈ 𝐡 ∣ βˆƒπ‘£ ∈ 𝑆 𝑒 = (𝑣 ∧ π‘Š)}    &   π½ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ…) ∧ (πΊβ€˜π‘†) ≀ π‘Š) β†’ (πΌβ€˜(πΊβ€˜π‘‡)) = ∩ π‘₯ ∈ 𝑇 (πΌβ€˜π‘₯))
 
Theoremdihglblem3aN 39654* Isomorphism H of a lattice glb. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = {𝑒 ∈ 𝐡 ∣ βˆƒπ‘£ ∈ 𝑆 𝑒 = (𝑣 ∧ π‘Š)}    &   π½ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ…) ∧ (πΊβ€˜π‘†) ≀ π‘Š) β†’ (πΌβ€˜(πΊβ€˜π‘†)) = ∩ π‘₯ ∈ 𝑇 (πΌβ€˜π‘₯))
 
Theoremdihglblem4 39655* Isomorphism H of a lattice glb. (Contributed by NM, 21-Mar-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘‡ = {𝑒 ∈ 𝐡 ∣ βˆƒπ‘£ ∈ 𝑆 𝑒 = (𝑣 ∧ π‘Š)}    &   π½ = ((DIsoBβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ…)) β†’ (πΌβ€˜(πΊβ€˜π‘†)) βŠ† ∩ π‘₯ ∈ 𝑆 (πΌβ€˜π‘₯))
 
Theoremdihglblem5 39656* Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014.)
𝐡 = (Baseβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘† = (LSubSpβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 βŠ† 𝐡 ∧ 𝑇 β‰  βˆ…)) β†’ ∩ π‘₯ ∈ 𝑇 (πΌβ€˜π‘₯) ∈ 𝑆)
 
Theoremdihmeetlem2N 39657 Isomorphism H of a conjunction. (Contributed by NM, 22-Mar-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = π‘ž)    &    0 = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ (πΌβ€˜(𝑋 ∧ π‘Œ)) = ((πΌβ€˜π‘‹) ∩ (πΌβ€˜π‘Œ)))
 
TheoremdihglbcpreN 39658* Isomorphism H of a lattice glb when the glb is not under the fiducial hyperplane π‘Š. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   πΉ = (℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = π‘ž)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ…) ∧ Β¬ (πΊβ€˜π‘†) ≀ π‘Š) β†’ (πΌβ€˜(πΊβ€˜π‘†)) = ∩ π‘₯ ∈ 𝑆 (πΌβ€˜π‘₯))
 
TheoremdihglbcN 39659* Isomorphism H of a lattice glb when the glb is not under the fiducial hyperplane π‘Š. (Contributed by NM, 26-Mar-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    ≀ = (leβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ…) ∧ Β¬ (πΊβ€˜π‘†) ≀ π‘Š) β†’ (πΌβ€˜(πΊβ€˜π‘†)) = ∩ π‘₯ ∈ 𝑆 (πΌβ€˜π‘₯))
 
TheoremdihmeetcN 39660 Isomorphism H of a lattice meet when the meet is not under the fiducial hyperplane π‘Š. (Contributed by NM, 26-Mar-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ Β¬ (𝑋 ∧ π‘Œ) ≀ π‘Š) β†’ (πΌβ€˜(𝑋 ∧ π‘Œ)) = ((πΌβ€˜π‘‹) ∩ (πΌβ€˜π‘Œ)))
 
TheoremdihmeetbN 39661 Isomorphism H of a lattice meet when one element is under the fiducial hyperplane π‘Š. (Contributed by NM, 26-Mar-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ (πΌβ€˜(𝑋 ∧ π‘Œ)) = ((πΌβ€˜π‘‹) ∩ (πΌβ€˜π‘Œ)))
 
TheoremdihmeetbclemN 39662 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š) β†’ (πΌβ€˜(𝑋 ∧ π‘Œ)) = (((πΌβ€˜π‘‹) ∩ (πΌβ€˜π‘Œ)) ∩ (πΌβ€˜π‘Š)))
 
Theoremdihmeetlem3N 39663 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑄 ∨ (𝑋 ∧ π‘Š)) = 𝑋) ∧ ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑅 ∨ (π‘Œ ∧ π‘Š)) = π‘Œ)) β†’ 𝑄 β‰  𝑅)
 
Theoremdihmeetlem4preN 39664* Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    0 = (0gβ€˜π‘ˆ)    &   πΊ = (℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ((πΌβ€˜π‘„) ∩ (πΌβ€˜(𝑋 ∧ π‘Š))) = { 0 })
 
Theoremdihmeetlem4N 39665 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    0 = (0gβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ((πΌβ€˜π‘„) ∩ (πΌβ€˜(𝑋 ∧ π‘Š))) = { 0 })
 
Theoremdihmeetlem5 39666 Part of proof that isomorphism H is order-preserving . (Contributed by NM, 6-Apr-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≀ 𝑋)) β†’ (𝑋 ∧ (π‘Œ ∨ 𝑄)) = ((𝑋 ∧ π‘Œ) ∨ 𝑄))
 
Theoremdihmeetlem6 39667 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑄 ≀ 𝑋)) β†’ Β¬ (𝑋 ∧ (π‘Œ ∨ 𝑄)) ≀ π‘Š)
 
Theoremdihmeetlem7N 39668 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    β‡’   (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Œ)) β†’ (((𝑋 ∧ π‘Œ) ∨ 𝑝) ∧ π‘Œ) = (𝑋 ∧ π‘Œ))
 
Theoremdihjatc1 39669 Lemma for isomorphism H of a lattice meet. TODO: shorter proof if we change ∨ order of (𝑋 ∧ π‘Œ) ∨ 𝑄 here and down? (Contributed by NM, 6-Apr-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑄 ≀ 𝑋 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) β†’ (πΌβ€˜((𝑋 ∧ π‘Œ) ∨ 𝑄)) = ((πΌβ€˜π‘„) βŠ• (πΌβ€˜(𝑋 ∧ π‘Œ))))
 
Theoremdihjatc2N 39670 Isomorphism H of join with an atom. (Contributed by NM, 26-Aug-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑄 ≀ 𝑋 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) β†’ (πΌβ€˜(𝑄 ∨ (𝑋 ∧ π‘Œ))) = ((πΌβ€˜π‘„) βŠ• (πΌβ€˜(𝑋 ∧ π‘Œ))))
 
Theoremdihjatc3 39671 Isomorphism H of join with an atom. (Contributed by NM, 26-Aug-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑄 ≀ 𝑋 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) β†’ (πΌβ€˜((𝑋 ∧ π‘Œ) ∨ 𝑄)) = ((πΌβ€˜(𝑋 ∧ π‘Œ)) βŠ• (πΌβ€˜π‘„)))
 
Theoremdihmeetlem8N 39672 Lemma for isomorphism H of a lattice meet. TODO: shorter proof if we change ∨ order of (𝑋 ∧ π‘Œ) ∨ 𝑝 here and down? (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š) ∧ (𝑝 ≀ 𝑋 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) β†’ (πΌβ€˜((𝑋 ∧ π‘Œ) ∨ 𝑝)) = ((πΌβ€˜π‘) βŠ• (πΌβ€˜(𝑋 ∧ π‘Œ))))
 
Theoremdihmeetlem9N 39673 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) β†’ (((πΌβ€˜π‘) βŠ• (πΌβ€˜(𝑋 ∧ π‘Œ))) ∩ (πΌβ€˜π‘Œ)) = ((πΌβ€˜(𝑋 ∧ π‘Œ)) βŠ• ((πΌβ€˜π‘) ∩ (πΌβ€˜π‘Œ))))
 
Theoremdihmeetlem10N 39674 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ ((𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š) ∧ 𝑝 ≀ 𝑋)) β†’ (πΌβ€˜((𝑋 ∧ π‘Œ) ∨ 𝑝)) = ((πΌβ€˜π‘‹) ∩ (πΌβ€˜(π‘Œ ∨ 𝑝))))
 
Theoremdihmeetlem11N 39675 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ ((𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š) ∧ 𝑝 ≀ 𝑋)) β†’ ((πΌβ€˜((𝑋 ∧ π‘Œ) ∨ 𝑝)) ∩ (πΌβ€˜π‘Œ)) = ((πΌβ€˜π‘‹) ∩ (πΌβ€˜π‘Œ)))
 
Theoremdihmeetlem12N 39676 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ ((𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š) ∧ 𝑝 ≀ 𝑋 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) β†’ ((πΌβ€˜(𝑋 ∧ π‘Œ)) βŠ• ((πΌβ€˜π‘) ∩ (πΌβ€˜π‘Œ))) = ((πΌβ€˜π‘‹) ∩ (πΌβ€˜π‘Œ)))
 
Theoremdihmeetlem13N 39677* Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    0 = (0gβ€˜π‘ˆ)    &   πΉ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑄)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = 𝑅)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝑄 β‰  𝑅) β†’ ((πΌβ€˜π‘„) ∩ (πΌβ€˜π‘…)) = { 0 })
 
Theoremdihmeetlem14N 39678 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘Œ ∈ 𝐡 ∧ 𝑝 ∈ 𝐡) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ π‘Ÿ ≀ π‘Œ ∧ (π‘Œ ∧ 𝑝) ≀ π‘Š)) β†’ ((πΌβ€˜(π‘Œ ∧ 𝑝)) βŠ• ((πΌβ€˜π‘Ÿ) ∩ (πΌβ€˜π‘))) = ((πΌβ€˜π‘Œ) ∩ (πΌβ€˜π‘)))
 
Theoremdihmeetlem15N 39679 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    0 = (0gβ€˜π‘ˆ)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘Œ ∈ 𝐡 ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ π‘Ÿ ≀ π‘Œ ∧ (π‘Œ ∧ 𝑝) ≀ π‘Š)) β†’ ((πΌβ€˜π‘Ÿ) ∩ (πΌβ€˜π‘)) = { 0 })
 
Theoremdihmeetlem16N 39680 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘Œ ∈ 𝐡 ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ ((π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ π‘Ÿ ≀ π‘Œ ∧ (π‘Œ ∧ 𝑝) ≀ π‘Š)) β†’ (πΌβ€˜(π‘Œ ∧ 𝑝)) = ((πΌβ€˜π‘Œ) ∩ (πΌβ€˜π‘)))
 
Theoremdihmeetlem17N 39681 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    0 = (0.β€˜πΎ)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ (π‘Œ ∧ 𝑝) = 0 )
 
Theoremdihmeetlem18N 39682 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &    0 = (0gβ€˜π‘ˆ)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š) ∧ (π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ (𝑝 ≀ 𝑋 ∧ π‘Ÿ ≀ π‘Œ ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š))) β†’ ((πΌβ€˜π‘Œ) ∩ (πΌβ€˜π‘)) = { 0 })
 
Theoremdihmeetlem19N 39683 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ π‘Œ ∈ 𝐡) ∧ ((𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š) ∧ (π‘Ÿ ∈ 𝐴 ∧ Β¬ π‘Ÿ ≀ π‘Š) ∧ (𝑝 ≀ 𝑋 ∧ π‘Ÿ ≀ π‘Œ ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š))) β†’ (πΌβ€˜(𝑋 ∧ π‘Œ)) = ((πΌβ€˜π‘‹) ∩ (πΌβ€˜π‘Œ)))
 
Theoremdihmeetlem20N 39684 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &    ∨ = (joinβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &    βŠ• = (LSSumβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ ((π‘Œ ∈ 𝐡 ∧ Β¬ π‘Œ ≀ π‘Š) ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š)) β†’ (πΌβ€˜(𝑋 ∧ π‘Œ)) = ((πΌβ€˜π‘‹) ∩ (πΌβ€˜π‘Œ)))
 
TheoremdihmeetALTN 39685 Isomorphism H of a lattice meet. This version does not depend on the atomisticity of the constructed vector space. TODO: Delete? (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (πΌβ€˜(𝑋 ∧ π‘Œ)) = ((πΌβ€˜π‘‹) ∩ (πΌβ€˜π‘Œ)))
 
Theoremdih1dimatlem0 39686* Lemma for dih1dimat 39688. (Contributed by NM, 11-Apr-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    &   π΅ = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   πΆ = (Atomsβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   πΉ = (Scalarβ€˜π‘ˆ)    &   π½ = (invrβ€˜πΉ)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    Β· = ( ·𝑠 β€˜π‘ˆ)    &   π‘† = (LSubSpβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &    0 = (0gβ€˜π‘ˆ)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = (((π½β€˜π‘ )β€˜π‘“)β€˜π‘ƒ))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ 𝑠 β‰  𝑂) β†’ ((𝑖 = (π‘β€˜πΊ) ∧ 𝑝 ∈ 𝐸) ↔ ((𝑖 ∈ 𝑇 ∧ 𝑝 ∈ 𝐸) ∧ βˆƒπ‘‘ ∈ 𝐸 (𝑖 = (π‘‘β€˜π‘“) ∧ 𝑝 = (𝑑 ∘ 𝑠)))))
 
Theoremdih1dimatlem 39687* Lemma for dih1dimat 39688. (Contributed by NM, 10-Apr-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    &   π΅ = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &   πΆ = (Atomsβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   π‘… = ((trLβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (β„Ž ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   πΉ = (Scalarβ€˜π‘ˆ)    &   π½ = (invrβ€˜πΉ)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    Β· = ( ·𝑠 β€˜π‘ˆ)    &   π‘† = (LSubSpβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &    0 = (0gβ€˜π‘ˆ)    &   πΊ = (β„©β„Ž ∈ 𝑇 (β„Žβ€˜π‘ƒ) = (((π½β€˜π‘ )β€˜π‘“)β€˜π‘ƒ))    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐷 ∈ 𝐴) β†’ 𝐷 ∈ ran 𝐼)
 
Theoremdih1dimat 39688 Any 1-dimensional subspace is a value of isomorphism H. (Contributed by NM, 11-Apr-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴) β†’ 𝑃 ∈ ran 𝐼)
 
Theoremdihlsprn 39689 The span of a vector belongs to the range of isomorphism H. (Contributed by NM, 27-Apr-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝑉) β†’ (π‘β€˜{𝑋}) ∈ ran 𝐼)
 
TheoremdihlspsnssN 39690 A subspace included in a 1-dim subspace belongs to the range of isomorphism H. (Contributed by NM, 26-Apr-2014.) (New usage is discouraged.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &   π‘† = (LSubSpβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑇 βŠ† (π‘β€˜{𝑋})) β†’ (𝑇 ∈ 𝑆 ↔ 𝑇 ∈ ran 𝐼))
 
Theoremdihlspsnat 39691 The inverse isomorphism H of the span of a singleton is a Hilbert lattice atom. (Contributed by NM, 27-Apr-2014.)
𝐴 = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    0 = (0gβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 β‰  0 ) β†’ (β—‘πΌβ€˜(π‘β€˜{𝑋})) ∈ 𝐴)
 
Theoremdihatlat 39692 The isomorphism H of an atom is a 1-dim subspace. (Contributed by NM, 28-Apr-2014.)
𝐴 = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   πΏ = (LSAtomsβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑄 ∈ 𝐴) β†’ (πΌβ€˜π‘„) ∈ 𝐿)
 
Theoremdihat 39693 There exists at least one atom in the subspaces of vector space H. (Contributed by NM, 12-Aug-2014.)
𝐻 = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π΄ = (LSAtomsβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    β‡’   (πœ‘ β†’ (πΌβ€˜π‘ƒ) ∈ 𝐴)
 
TheoremdihpN 39694* The value of isomorphism H at the fiducial atom 𝑃 is determined by the vector ⟨0, π‘†βŸ© (the zero translation ltrnid 38493 and a nonzero member of the endomorphism ring). In particular, 𝑆 can be replaced with the ring unity ( I β†Ύ 𝑇). (Contributed by NM, 26-Aug-2014.) (New usage is discouraged.)
𝐡 = (Baseβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ƒ = ((ocβ€˜πΎ)β€˜π‘Š)    &   π‘‡ = ((LTrnβ€˜πΎ)β€˜π‘Š)    &   πΈ = ((TEndoβ€˜πΎ)β€˜π‘Š)    &   π‘‚ = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ (𝑆 ∈ 𝐸 ∧ 𝑆 β‰  𝑂))    β‡’   (πœ‘ β†’ (πΌβ€˜π‘ƒ) = (π‘β€˜{⟨( I β†Ύ 𝐡), π‘†βŸ©}))
 
Theoremdihlatat 39695 The reverse isomorphism H of a 1-dim subspace is an atom. (Contributed by NM, 28-Apr-2014.)
𝐴 = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   πΏ = (LSAtomsβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑄 ∈ 𝐿) β†’ (β—‘πΌβ€˜π‘„) ∈ 𝐴)
 
Theoremdihatexv 39696* There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 16-Aug-2014.)
𝐡 = (Baseβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    0 = (0gβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    &   (πœ‘ β†’ 𝑄 ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑄 ∈ 𝐴 ↔ βˆƒπ‘₯ ∈ (𝑉 βˆ– { 0 })(πΌβ€˜π‘„) = (π‘β€˜{π‘₯})))
 
Theoremdihatexv2 39697* There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 17-Aug-2014.)
𝐴 = (Atomsβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    &    0 = (0gβ€˜π‘ˆ)    &   π‘ = (LSpanβ€˜π‘ˆ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))    β‡’   (πœ‘ β†’ (𝑄 ∈ 𝐴 ↔ βˆƒπ‘₯ ∈ (𝑉 βˆ– { 0 })𝑄 = (β—‘πΌβ€˜(π‘β€˜{π‘₯}))))
 
Theoremdihglblem6 39698* Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014.)
𝐡 = (Baseβ€˜πΎ)    &    ≀ = (leβ€˜πΎ)    &    ∧ = (meetβ€˜πΎ)    &   π΄ = (Atomsβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘ƒ = (LSubSpβ€˜π‘ˆ)    &   π· = (LSAtomsβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ…)) β†’ (πΌβ€˜(πΊβ€˜π‘†)) = ∩ π‘₯ ∈ 𝑆 (πΌβ€˜π‘₯))
 
Theoremdihglb 39699* Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014.)
𝐡 = (Baseβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† 𝐡 ∧ 𝑆 β‰  βˆ…)) β†’ (πΌβ€˜(πΊβ€˜π‘†)) = ∩ π‘₯ ∈ 𝑆 (πΌβ€˜π‘₯))
 
Theoremdihglb2 39700* Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014.)
𝐡 = (Baseβ€˜πΎ)    &   πΊ = (glbβ€˜πΎ)    &   π» = (LHypβ€˜πΎ)    &   πΌ = ((DIsoHβ€˜πΎ)β€˜π‘Š)    &   π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)    &   π‘‰ = (Baseβ€˜π‘ˆ)    β‡’   (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 βŠ† 𝑉) β†’ (πΌβ€˜(πΊβ€˜{π‘₯ ∈ 𝐡 ∣ 𝑆 βŠ† (πΌβ€˜π‘₯)})) = ∩ {𝑦 ∈ ran 𝐼 ∣ 𝑆 βŠ† 𝑦})
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-46997
  Copyright terms: Public domain < Previous  Next >