![]() |
Metamath
Proof Explorer Theorem List (p. 397 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30767) |
![]() (30768-32290) |
![]() (32291-48346) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 4atex 39601* | Whenever there are at least 4 atoms under π β¨ π (specifically, π, π, π, and (π β¨ π) β§ π), there are also at least 4 atoms under π β¨ π. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p β¨ q/0 and hence p β¨ s/0 contains at least four atoms..." Note that by cvlsupr2 38867, our (π β¨ π) = (π β¨ π) is a shorter way to express π β π β§ π β π β§ π β€ (π β¨ π). (Contributed by NM, 27-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ (π β π β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π β¨ π§) = (π β¨ π§))) | ||
Theorem | 4atex2 39602* | More general version of 4atex 39601 for a line π β¨ π not necessarily connected to π β¨ π. (Contributed by NM, 27-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π β π΄ β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π β¨ π§) = (π β¨ π§))) | ||
Theorem | 4atex2-0aOLDN 39603* | Same as 4atex2 39602 except that π is zero. (Contributed by NM, 27-May-2013.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π = (0.βπΎ)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π β¨ π§) = (π β¨ π§))) | ||
Theorem | 4atex2-0bOLDN 39604* | Same as 4atex2 39602 except that π is zero. (Contributed by NM, 27-May-2013.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π = (0.βπΎ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π β¨ π§) = (π β¨ π§))) | ||
Theorem | 4atex2-0cOLDN 39605* | Same as 4atex2 39602 except that π and π are zero. TODO: do we need this one or 4atex2-0aOLDN 39603 or 4atex2-0bOLDN 39604? (Contributed by NM, 27-May-2013.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π = (0.βπΎ)) β§ (π β π β§ π = (0.βπΎ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π β¨ π§) = (π β¨ π§))) | ||
Theorem | 4atex3 39606* | More general version of 4atex 39601 for a line π β¨ π not necessarily connected to π β¨ π. (Contributed by NM, 29-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ π β π) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π)))) | ||
Theorem | lautset 39607* | The set of lattice automorphisms. (Contributed by NM, 11-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (πΎ β π΄ β πΌ = {π β£ (π:π΅β1-1-ontoβπ΅ β§ βπ₯ β π΅ βπ¦ β π΅ (π₯ β€ π¦ β (πβπ₯) β€ (πβπ¦)))}) | ||
Theorem | islaut 39608* | The predicate "is a lattice automorphism". (Contributed by NM, 11-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (πΎ β π΄ β (πΉ β πΌ β (πΉ:π΅β1-1-ontoβπ΅ β§ βπ₯ β π΅ βπ¦ β π΅ (π₯ β€ π¦ β (πΉβπ₯) β€ (πΉβπ¦))))) | ||
Theorem | lautle 39609 | Less-than or equal property of a lattice automorphism. (Contributed by NM, 19-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (((πΎ β π β§ πΉ β πΌ) β§ (π β π΅ β§ π β π΅)) β (π β€ π β (πΉβπ) β€ (πΉβπ))) | ||
Theorem | laut1o 39610 | A lattice automorphism is one-to-one and onto. (Contributed by NM, 19-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΌ = (LAutβπΎ) β β’ ((πΎ β π΄ β§ πΉ β πΌ) β πΉ:π΅β1-1-ontoβπ΅) | ||
Theorem | laut11 39611 | One-to-one property of a lattice automorphism. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (((πΎ β π β§ πΉ β πΌ) β§ (π β π΅ β§ π β π΅)) β ((πΉβπ) = (πΉβπ) β π = π)) | ||
Theorem | lautcl 39612 | A lattice automorphism value belongs to the base set. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (((πΎ β π β§ πΉ β πΌ) β§ π β π΅) β (πΉβπ) β π΅) | ||
Theorem | lautcnvclN 39613 | Reverse closure of a lattice automorphism. (Contributed by NM, 25-May-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (((πΎ β π β§ πΉ β πΌ) β§ π β π΅) β (β‘πΉβπ) β π΅) | ||
Theorem | lautcnvle 39614 | Less-than or equal property of lattice automorphism converse. (Contributed by NM, 19-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (((πΎ β π β§ πΉ β πΌ) β§ (π β π΅ β§ π β π΅)) β (π β€ π β (β‘πΉβπ) β€ (β‘πΉβπ))) | ||
Theorem | lautcnv 39615 | The converse of a lattice automorphism is a lattice automorphism. (Contributed by NM, 10-May-2013.) |
β’ πΌ = (LAutβπΎ) β β’ ((πΎ β π β§ πΉ β πΌ) β β‘πΉ β πΌ) | ||
Theorem | lautlt 39616 | Less-than property of a lattice automorphism. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) & β’ πΌ = (LAutβπΎ) β β’ ((πΎ β π΄ β§ (πΉ β πΌ β§ π β π΅ β§ π β π΅)) β (π < π β (πΉβπ) < (πΉβπ))) | ||
Theorem | lautcvr 39617 | Covering property of a lattice automorphism. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ πΌ = (LAutβπΎ) β β’ ((πΎ β π΄ β§ (πΉ β πΌ β§ π β π΅ β§ π β π΅)) β (ππΆπ β (πΉβπ)πΆ(πΉβπ))) | ||
Theorem | lautj 39618 | Meet property of a lattice automorphism. (Contributed by NM, 25-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ πΌ = (LAutβπΎ) β β’ ((πΎ β Lat β§ (πΉ β πΌ β§ π β π΅ β§ π β π΅)) β (πΉβ(π β¨ π)) = ((πΉβπ) β¨ (πΉβπ))) | ||
Theorem | lautm 39619 | Meet property of a lattice automorphism. (Contributed by NM, 19-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β§ = (meetβπΎ) & β’ πΌ = (LAutβπΎ) β β’ ((πΎ β Lat β§ (πΉ β πΌ β§ π β π΅ β§ π β π΅)) β (πΉβ(π β§ π)) = ((πΉβπ) β§ (πΉβπ))) | ||
Theorem | lauteq 39620* | A lattice automorphism argument is equal to its value if all atoms are equal to their values. (Contributed by NM, 24-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (((πΎ β HL β§ πΉ β πΌ β§ π β π΅) β§ βπ β π΄ (πΉβπ) = π) β (πΉβπ) = π) | ||
Theorem | idlaut 39621 | The identity function is a lattice automorphism. (Contributed by NM, 18-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (πΎ β π΄ β ( I βΎ π΅) β πΌ) | ||
Theorem | lautco 39622 | The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.) |
β’ πΌ = (LAutβπΎ) β β’ ((πΎ β π β§ πΉ β πΌ β§ πΊ β πΌ) β (πΉ β πΊ) β πΌ) | ||
Theorem | pautsetN 39623* | The set of projective automorphisms. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
β’ π = (PSubSpβπΎ) & β’ π = (PAutβπΎ) β β’ (πΎ β π΅ β π = {π β£ (π:πβ1-1-ontoβπ β§ βπ₯ β π βπ¦ β π (π₯ β π¦ β (πβπ₯) β (πβπ¦)))}) | ||
Theorem | ispautN 39624* | The predicate "is a projective automorphism". (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
β’ π = (PSubSpβπΎ) & β’ π = (PAutβπΎ) β β’ (πΎ β π΅ β (πΉ β π β (πΉ:πβ1-1-ontoβπ β§ βπ₯ β π βπ¦ β π (π₯ β π¦ β (πΉβπ₯) β (πΉβπ¦))))) | ||
Syntax | cldil 39625 | Extend class notation with set of all lattice dilations. |
class LDil | ||
Syntax | cltrn 39626 | Extend class notation with set of all lattice translations. |
class LTrn | ||
Syntax | cdilN 39627 | Extend class notation with set of all dilations. |
class Dil | ||
Syntax | ctrnN 39628 | Extend class notation with set of all translations. |
class Trn | ||
Definition | df-ldil 39629* | Define set of all lattice dilations. Similar to definition of dilation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.) |
β’ LDil = (π β V β¦ (π€ β (LHypβπ) β¦ {π β (LAutβπ) β£ βπ₯ β (Baseβπ)(π₯(leβπ)π€ β (πβπ₯) = π₯)})) | ||
Definition | df-ltrn 39630* | Define set of all lattice translations. Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.) |
β’ LTrn = (π β V β¦ (π€ β (LHypβπ) β¦ {π β ((LDilβπ)βπ€) β£ βπ β (Atomsβπ)βπ β (Atomsβπ)((Β¬ π(leβπ)π€ β§ Β¬ π(leβπ)π€) β ((π(joinβπ)(πβπ))(meetβπ)π€) = ((π(joinβπ)(πβπ))(meetβπ)π€))})) | ||
Definition | df-dilN 39631* | Define set of all dilations. Definition of dilation in [Crawley] p. 111. (Contributed by NM, 30-Jan-2012.) |
β’ Dil = (π β V β¦ (π β (Atomsβπ) β¦ {π β (PAutβπ) β£ βπ₯ β (PSubSpβπ)(π₯ β ((WAtomsβπ)βπ) β (πβπ₯) = π₯)})) | ||
Definition | df-trnN 39632* | Define set of all translations. Definition of translation in [Crawley] p. 111. (Contributed by NM, 4-Feb-2012.) |
β’ Trn = (π β V β¦ (π β (Atomsβπ) β¦ {π β ((Dilβπ)βπ) β£ βπ β ((WAtomsβπ)βπ)βπ β ((WAtomsβπ)βπ)((π(+πβπ)(πβπ)) β© ((β₯πβπ)β{π})) = ((π(+πβπ)(πβπ)) β© ((β₯πβπ)β{π}))})) | ||
Theorem | ldilfset 39633* | The mapping from fiducial co-atom π€ to its set of lattice dilations. (Contributed by NM, 11-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = (LAutβπΎ) β β’ (πΎ β πΆ β (LDilβπΎ) = (π€ β π» β¦ {π β πΌ β£ βπ₯ β π΅ (π₯ β€ π€ β (πβπ₯) = π₯)})) | ||
Theorem | ldilset 39634* | The set of lattice dilations for a fiducial co-atom π. (Contributed by NM, 11-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = (LAutβπΎ) & β’ π· = ((LDilβπΎ)βπ) β β’ ((πΎ β πΆ β§ π β π») β π· = {π β πΌ β£ βπ₯ β π΅ (π₯ β€ π β (πβπ₯) = π₯)}) | ||
Theorem | isldil 39635* | The predicate "is a lattice dilation". Similar to definition of dilation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = (LAutβπΎ) & β’ π· = ((LDilβπΎ)βπ) β β’ ((πΎ β πΆ β§ π β π») β (πΉ β π· β (πΉ β πΌ β§ βπ₯ β π΅ (π₯ β€ π β (πΉβπ₯) = π₯)))) | ||
Theorem | ldillaut 39636 | A lattice dilation is an automorphism. (Contributed by NM, 20-May-2012.) |
β’ π» = (LHypβπΎ) & β’ πΌ = (LAutβπΎ) & β’ π· = ((LDilβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π·) β πΉ β πΌ) | ||
Theorem | ldil1o 39637 | A lattice dilation is a one-to-one onto function. (Contributed by NM, 19-Apr-2013.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π· = ((LDilβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π·) β πΉ:π΅β1-1-ontoβπ΅) | ||
Theorem | ldilval 39638 | Value of a lattice dilation under its co-atom. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π· = ((LDilβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π· β§ (π β π΅ β§ π β€ π)) β (πΉβπ) = π) | ||
Theorem | idldil 39639 | The identity function is a lattice dilation. (Contributed by NM, 18-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π· = ((LDilβπΎ)βπ) β β’ ((πΎ β π΄ β§ π β π») β ( I βΎ π΅) β π·) | ||
Theorem | ldilcnv 39640 | The converse of a lattice dilation is a lattice dilation. (Contributed by NM, 10-May-2013.) |
β’ π» = (LHypβπΎ) & β’ π· = ((LDilβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π·) β β‘πΉ β π·) | ||
Theorem | ldilco 39641 | The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.) |
β’ π» = (LHypβπΎ) & β’ π· = ((LDilβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π· β§ πΊ β π·) β (πΉ β πΊ) β π·) | ||
Theorem | ltrnfset 39642* | The set of all lattice translations for a lattice πΎ. (Contributed by NM, 11-May-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (πΎ β πΆ β (LTrnβπΎ) = (π€ β π» β¦ {π β ((LDilβπΎ)βπ€) β£ βπ β π΄ βπ β π΄ ((Β¬ π β€ π€ β§ Β¬ π β€ π€) β ((π β¨ (πβπ)) β§ π€) = ((π β¨ (πβπ)) β§ π€))})) | ||
Theorem | ltrnset 39643* | The set of lattice translations for a fiducial co-atom π. (Contributed by NM, 11-May-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π· = ((LDilβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) β β’ ((πΎ β π΅ β§ π β π») β π = {π β π· β£ βπ β π΄ βπ β π΄ ((Β¬ π β€ π β§ Β¬ π β€ π) β ((π β¨ (πβπ)) β§ π) = ((π β¨ (πβπ)) β§ π))}) | ||
Theorem | isltrn 39644* | The predicate "is a lattice translation". Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π· = ((LDilβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) β β’ ((πΎ β π΅ β§ π β π») β (πΉ β π β (πΉ β π· β§ βπ β π΄ βπ β π΄ ((Β¬ π β€ π β§ Β¬ π β€ π) β ((π β¨ (πΉβπ)) β§ π) = ((π β¨ (πΉβπ)) β§ π))))) | ||
Theorem | isltrn2N 39645* | The predicate "is a lattice translation". Version of isltrn 39644 that considers only different π and π. TODO: Can this eliminate some separate proofs for the π = π case? (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π· = ((LDilβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) β β’ ((πΎ β π΅ β§ π β π») β (πΉ β π β (πΉ β π· β§ βπ β π΄ βπ β π΄ ((Β¬ π β€ π β§ Β¬ π β€ π β§ π β π) β ((π β¨ (πΉβπ)) β§ π) = ((π β¨ (πΉβπ)) β§ π))))) | ||
Theorem | ltrnu 39646 | Uniqueness property of a lattice translation value for atoms not under the fiducial co-atom π. Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 20-May-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ ((((πΎ β π β§ π β π») β§ πΉ β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β ((π β¨ (πΉβπ)) β§ π) = ((π β¨ (πΉβπ)) β§ π)) | ||
Theorem | ltrnldil 39647 | A lattice translation is a lattice dilation. (Contributed by NM, 20-May-2012.) |
β’ π» = (LHypβπΎ) & β’ π· = ((LDilβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π) β πΉ β π·) | ||
Theorem | ltrnlaut 39648 | A lattice translation is a lattice automorphism. (Contributed by NM, 20-May-2012.) |
β’ π» = (LHypβπΎ) & β’ πΌ = (LAutβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π) β πΉ β πΌ) | ||
Theorem | ltrn1o 39649 | A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π) β πΉ:π΅β1-1-ontoβπ΅) | ||
Theorem | ltrncl 39650 | Closure of a lattice translation. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ π β π΅) β (πΉβπ) β π΅) | ||
Theorem | ltrn11 39651 | One-to-one property of a lattice translation. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β ((πΉβπ) = (πΉβπ) β π = π)) | ||
Theorem | ltrncnvnid 39652 | If a translation is different from the identity, so is its converse. (Contributed by NM, 17-Jun-2013.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΉ β ( I βΎ π΅)) β β‘πΉ β ( I βΎ π΅)) | ||
Theorem | ltrncoidN 39653 | Two translations are equal if the composition of one with the converse of the other is the zero translation. This is an analogue of vector subtraction. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β ((πΉ β β‘πΊ) = ( I βΎ π΅) β πΉ = πΊ)) | ||
Theorem | ltrnle 39654 | Less-than or equal property of a lattice translation. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β (π β€ π β (πΉβπ) β€ (πΉβπ))) | ||
Theorem | ltrncnvleN 39655 | Less-than or equal property of lattice translation converse. (Contributed by NM, 10-May-2013.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β (π β€ π β (β‘πΉβπ) β€ (β‘πΉβπ))) | ||
Theorem | ltrnm 39656 | Lattice translation of a meet. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β§ = (meetβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β (πΉβ(π β§ π)) = ((πΉβπ) β§ (πΉβπ))) | ||
Theorem | ltrnj 39657 | Lattice translation of a meet. TODO: change antecedent to πΎ β HL (Contributed by NM, 25-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β (πΉβ(π β¨ π)) = ((πΉβπ) β¨ (πΉβπ))) | ||
Theorem | ltrncvr 39658 | Covering property of a lattice translation. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β π΅)) β (ππΆπ β (πΉβπ)πΆ(πΉβπ))) | ||
Theorem | ltrnval1 39659 | Value of a lattice translation under its co-atom. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β€ π)) β (πΉβπ) = π) | ||
Theorem | ltrnid 39660* | A lattice translation is the identity function iff all atoms not under the fiducial co-atom π are equal to their values. (Contributed by NM, 24-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (βπ β π΄ (Β¬ π β€ π β (πΉβπ) = π) β πΉ = ( I βΎ π΅))) | ||
Theorem | ltrnnid 39661* | If a lattice translation is not the identity, then there is an atom not under the fiducial co-atom π and not equal to its translation. (Contributed by NM, 24-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΉ β ( I βΎ π΅)) β βπ β π΄ (Β¬ π β€ π β§ (πΉβπ) β π)) | ||
Theorem | ltrnatb 39662 | The lattice translation of an atom is an atom. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΅) β (π β π΄ β (πΉβπ) β π΄)) | ||
Theorem | ltrncnvatb 39663 | The converse of the lattice translation of an atom is an atom. (Contributed by NM, 2-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΅) β (π β π΄ β (β‘πΉβπ) β π΄)) | ||
Theorem | ltrnel 39664 | The lattice translation of an atom not under the fiducial co-atom is also an atom not under the fiducial co-atom. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 22-May-2012.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ (π β π΄ β§ Β¬ π β€ π)) β ((πΉβπ) β π΄ β§ Β¬ (πΉβπ) β€ π)) | ||
Theorem | ltrnat 39665 | The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel 39664 uses. (Contributed by NM, 25-May-2012.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΄) β (πΉβπ) β π΄) | ||
Theorem | ltrncnvat 39666 | The converse of the lattice translation of an atom is an atom. (Contributed by NM, 9-May-2013.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΄) β (β‘πΉβπ) β π΄) | ||
Theorem | ltrncnvel 39667 | The converse of the lattice translation of an atom not under the fiducial co-atom. (Contributed by NM, 10-May-2013.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ (π β π΄ β§ Β¬ π β€ π)) β ((β‘πΉβπ) β π΄ β§ Β¬ (β‘πΉβπ) β€ π)) | ||
Theorem | ltrncoelN 39668 | Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel 39664 uses. (Contributed by NM, 1-May-2013.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ (π β π΄ β§ Β¬ π β€ π)) β ((πΉβ(πΊβπ)) β π΄ β§ Β¬ (πΉβ(πΊβπ)) β€ π)) | ||
Theorem | ltrncoat 39669 | Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel 39664, ltrnat 39665 uses. (Contributed by NM, 1-May-2013.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ π β π΄) β (πΉβ(πΊβπ)) β π΄) | ||
Theorem | ltrncoval 39670 | Two ways to express value of translation composition. (Contributed by NM, 31-May-2013.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ π β π΄) β ((πΉ β πΊ)βπ) = (πΉβ(πΊβπ))) | ||
Theorem | ltrncnv 39671 | The converse of a lattice translation is a lattice translation. (Contributed by NM, 10-May-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β β‘πΉ β π) | ||
Theorem | ltrn11at 39672 | Frequently used one-to-one property of lattice translation atoms. (Contributed by NM, 5-May-2013.) |
β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ (π β π΄ β§ π β π΄ β§ π β π)) β (πΉβπ) β (πΉβπ)) | ||
Theorem | ltrneq2 39673* | The equality of two translations is determined by their equality at atoms. (Contributed by NM, 2-Mar-2014.) |
β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (βπ β π΄ (πΉβπ) = (πΊβπ) β πΉ = πΊ)) | ||
Theorem | ltrneq 39674* | The equality of two translations is determined by their equality at atoms not under co-atom π. (Contributed by NM, 20-Jun-2013.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (βπ β π΄ (Β¬ π β€ π β (πΉβπ) = (πΊβπ)) β πΉ = πΊ)) | ||
Theorem | idltrn 39675 | The identity function is a lattice translation. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 18-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ ((πΎ β HL β§ π β π») β ( I βΎ π΅) β π) | ||
Theorem | ltrnmw 39676 | Property of lattice translation value. Remark below Lemma B in [Crawley] p. 112. TODO: Can this be used in more places? (Contributed by NM, 20-May-2012.) (Proof shortened by OpenAI, 25-Mar-2020.) |
β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ (π β π΄ β§ Β¬ π β€ π)) β ((πΉβπ) β§ π) = 0 ) | ||
Theorem | dilfsetN 39677* | The mapping from fiducial atom to set of dilations. (Contributed by NM, 30-Jan-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PSubSpβπΎ) & β’ π = (WAtomsβπΎ) & β’ π = (PAutβπΎ) & β’ πΏ = (DilβπΎ) β β’ (πΎ β π΅ β πΏ = (π β π΄ β¦ {π β π β£ βπ₯ β π (π₯ β (πβπ) β (πβπ₯) = π₯)})) | ||
Theorem | dilsetN 39678* | The set of dilations for a fiducial atom π·. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PSubSpβπΎ) & β’ π = (WAtomsβπΎ) & β’ π = (PAutβπΎ) & β’ πΏ = (DilβπΎ) β β’ ((πΎ β π΅ β§ π· β π΄) β (πΏβπ·) = {π β π β£ βπ₯ β π (π₯ β (πβπ·) β (πβπ₯) = π₯)}) | ||
Theorem | isdilN 39679* | The predicate "is a dilation". (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PSubSpβπΎ) & β’ π = (WAtomsβπΎ) & β’ π = (PAutβπΎ) & β’ πΏ = (DilβπΎ) β β’ ((πΎ β π΅ β§ π· β π΄) β (πΉ β (πΏβπ·) β (πΉ β π β§ βπ₯ β π (π₯ β (πβπ·) β (πΉβπ₯) = π₯)))) | ||
Theorem | trnfsetN 39680* | The mapping from fiducial atom to set of translations. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PSubSpβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ π = (WAtomsβπΎ) & β’ π = (PAutβπΎ) & β’ πΏ = (DilβπΎ) & β’ π = (TrnβπΎ) β β’ (πΎ β πΆ β π = (π β π΄ β¦ {π β (πΏβπ) β£ βπ β (πβπ)βπ β (πβπ)((π + (πβπ)) β© ( β₯ β{π})) = ((π + (πβπ)) β© ( β₯ β{π}))})) | ||
Theorem | trnsetN 39681* | The set of translations for a fiducial atom π·. (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PSubSpβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ π = (WAtomsβπΎ) & β’ π = (PAutβπΎ) & β’ πΏ = (DilβπΎ) & β’ π = (TrnβπΎ) β β’ ((πΎ β π΅ β§ π· β π΄) β (πβπ·) = {π β (πΏβπ·) β£ βπ β (πβπ·)βπ β (πβπ·)((π + (πβπ)) β© ( β₯ β{π·})) = ((π + (πβπ)) β© ( β₯ β{π·}))}) | ||
Theorem | istrnN 39682* | The predicate "is a translation". (Contributed by NM, 4-Feb-2012.) (New usage is discouraged.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (PSubSpβπΎ) & β’ + = (+πβπΎ) & β’ β₯ = (β₯πβπΎ) & β’ π = (WAtomsβπΎ) & β’ π = (PAutβπΎ) & β’ πΏ = (DilβπΎ) & β’ π = (TrnβπΎ) β β’ ((πΎ β π΅ β§ π· β π΄) β (πΉ β (πβπ·) β (πΉ β (πΏβπ·) β§ βπ β (πβπ·)βπ β (πβπ·)((π + (πΉβπ)) β© ( β₯ β{π·})) = ((π + (πΉβπ)) β© ( β₯ β{π·}))))) | ||
Syntax | ctrl 39683 | Extend class notation with set of all traces of lattice translations. |
class trL | ||
Definition | df-trl 39684* | Define trace of a lattice translation. (Contributed by NM, 20-May-2012.) |
β’ trL = (π β V β¦ (π€ β (LHypβπ) β¦ (π β ((LTrnβπ)βπ€) β¦ (β©π₯ β (Baseβπ)βπ β (Atomsβπ)(Β¬ π(leβπ)π€ β π₯ = ((π(joinβπ)(πβπ))(meetβπ)π€)))))) | ||
Theorem | trlfset 39685* | The set of all traces of lattice translations for a lattice πΎ. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ (πΎ β πΆ β (trLβπΎ) = (π€ β π» β¦ (π β ((LTrnβπΎ)βπ€) β¦ (β©π₯ β π΅ βπ β π΄ (Β¬ π β€ π€ β π₯ = ((π β¨ (πβπ)) β§ π€)))))) | ||
Theorem | trlset 39686* | The set of traces of lattice translations for a fiducial co-atom π. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ ((πΎ β πΆ β§ π β π») β π = (π β π β¦ (β©π₯ β π΅ βπ β π΄ (Β¬ π β€ π β π₯ = ((π β¨ (πβπ)) β§ π))))) | ||
Theorem | trlval 39687* | The value of the trace of a lattice translation. (Contributed by NM, 20-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ πΉ β π) β (π βπΉ) = (β©π₯ β π΅ βπ β π΄ (Β¬ π β€ π β π₯ = ((π β¨ (πΉβπ)) β§ π)))) | ||
Theorem | trlval2 39688 | The value of the trace of a lattice translation, given any atom π not under the fiducial co-atom π. Note: this requires only the weaker assumption πΎ β Lat; we use πΎ β HL for convenience. (Contributed by NM, 20-May-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ (π β π΄ β§ Β¬ π β€ π)) β (π βπΉ) = ((π β¨ (πΉβπ)) β§ π)) | ||
Theorem | trlcl 39689 | Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (π βπΉ) β π΅) | ||
Theorem | trlcnv 39690 | The trace of the converse of a lattice translation. (Contributed by NM, 10-May-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β (π ββ‘πΉ) = (π βπΉ)) | ||
Theorem | trljat1 39691 | The value of a translation of an atom π not under the fiducial co-atom π, joined with trace. Equation above Lemma C in [Crawley] p. 112. TODO: shorten with atmod3i1 39389? (Contributed by NM, 22-May-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ (π β π΄ β§ Β¬ π β€ π)) β (π β¨ (π βπΉ)) = (π β¨ (πΉβπ))) | ||
Theorem | trljat2 39692 | The value of a translation of an atom π not under the fiducial co-atom π, joined with trace. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 25-May-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ (π β π΄ β§ Β¬ π β€ π)) β ((πΉβπ) β¨ (π βπΉ)) = (π β¨ (πΉβπ))) | ||
Theorem | trljat3 39693 | The value of a translation of an atom π not under the fiducial co-atom π, joined with trace. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 22-May-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ (π β π΄ β§ Β¬ π β€ π)) β (π β¨ (π βπΉ)) = ((πΉβπ) β¨ (π βπΉ))) | ||
Theorem | trlat 39694 | If an atom differs from its translation, the trace is an atom. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 23-May-2012.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (πΉ β π β§ (πΉβπ) β π)) β (π βπΉ) β π΄) | ||
Theorem | trl0 39695 | If an atom not under the fiducial co-atom π equals its lattice translation, the trace of the translation is zero. (Contributed by NM, 24-May-2012.) |
β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (πΉ β π β§ (πΉβπ) = π)) β (π βπΉ) = 0 ) | ||
Theorem | trlator0 39696 | The trace of a lattice translation is an atom or zero. (Contributed by NM, 5-May-2013.) |
β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β ((π βπΉ) β π΄ β¨ (π βπΉ) = 0 )) | ||
Theorem | trlatn0 39697 | The trace of a lattice translation is an atom iff it is nonzero. (Contributed by NM, 14-Jun-2013.) |
β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β ((π βπΉ) β π΄ β (π βπΉ) β 0 )) | ||
Theorem | trlnidat 39698 | The trace of a lattice translation other than the identity is an atom. Remark above Lemma C in [Crawley] p. 112. (Contributed by NM, 23-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΉ β ( I βΎ π΅)) β (π βπΉ) β π΄) | ||
Theorem | ltrnnidn 39699 | If a lattice translation is not the identity, then the translation of any atom not under the fiducial co-atom π is different from the atom. Remark above Lemma C in [Crawley] p. 112. (Contributed by NM, 24-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (π β π΄ β§ Β¬ π β€ π)) β (πΉβπ) β π) | ||
Theorem | ltrnideq 39700 | Property of the identity lattice translation. (Contributed by NM, 27-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ (π β π΄ β§ Β¬ π β€ π)) β (πΉ = ( I βΎ π΅) β (πΉβπ) = π)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |