Home | Metamath
Proof Explorer Theorem List (p. 397 of 470) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29658) |
Hilbert Space Explorer
(29659-31181) |
Users' Mathboxes
(31182-46997) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dib2dim 39601 | Extend dia2dim 39435 to partial isomorphism B. (Contributed by NM, 22-Sep-2014.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoBβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ π β€ π)) & β’ (π β (π β π΄ β§ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) β ((πΌβπ) β (πΌβπ))) | ||
Theorem | dih2dimb 39602 | Extend dib2dim 39601 to isomorphism H. (Contributed by NM, 22-Sep-2014.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ π β€ π)) & β’ (π β (π β π΄ β§ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) β ((πΌβπ) β (πΌβπ))) | ||
Theorem | dih2dimbALTN 39603 | Extend dia2dim 39435 to isomorphism H. (This version combines dib2dim 39601 and dih2dimb 39602 for shorter overall proof, but may be less easy to understand. TODO: decide which to use.) (Contributed by NM, 22-Sep-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ π β€ π)) & β’ (π β (π β π΄ β§ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) β ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihopelvalcqat 39604* | Ordered pair member of the partial isomorphism H for atom argument not under π. TODO: remove .t hypothesis. (Contributed by NM, 30-Mar-2014.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ πΊ = (β©π β π (πβπ) = π) & β’ πΉ β V & β’ π β V β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (β¨πΉ, πβ© β (πΌβπ) β (πΉ = (πβπΊ) β§ π β πΈ))) | ||
Theorem | dihvalcq2 39605 | Value of isomorphism H for a lattice πΎ when Β¬ π β€ π, given auxiliary atom π. (Contributed by NM, 26-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ π β€ π)) β (πΌβπ) = ((πΌβπ) β (πΌβ(π β§ π)))) | ||
Theorem | dihopelvalcpre 39606* | Member of value of isomorphism H for a lattice πΎ when Β¬ π β€ π, given auxiliary atom π. TODO: refactor to be shorter and more understandable; add lemmas? (Contributed by NM, 13-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ πΊ = (β©π β π (πβπ) = π) & β’ πΉ β V & β’ π β V & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((DIsoBβπΎ)βπ) & β’ πΆ = ((DIsoCβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ + = (+gβπ) & β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ π = (π β πΈ, π β πΈ β¦ (β β π β¦ ((πββ) β (πββ)))) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β (β¨πΉ, πβ© β (πΌβπ) β ((πΉ β π β§ π β πΈ) β§ (π β(πΉ β β‘(πβπΊ))) β€ π))) | ||
Theorem | dihopelvalc 39607* | Member of value of isomorphism H for a lattice πΎ when Β¬ π β€ π, given auxiliary atom π. (Contributed by NM, 13-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ πΊ = (β©π β π (πβπ) = π) & β’ πΉ β V & β’ π β V β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β (β¨πΉ, πβ© β (πΌβπ) β ((πΉ β π β§ π β πΈ) β§ (π β(πΉ β β‘(πβπΊ))) β€ π))) | ||
Theorem | dihlss 39608 | The value of isomorphism H is a subspace. (Contributed by NM, 6-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΅) β (πΌβπ) β π) | ||
Theorem | dihss 39609 | The value of isomorphism H is a set of vectors. (Contributed by NM, 14-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΅) β (πΌβπ) β π) | ||
Theorem | dihssxp 39610 | An isomorphism H value is included in the vector space (expressed as π Γ πΈ). (Contributed by NM, 26-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) β β’ (π β (πΌβπ) β (π Γ πΈ)) | ||
Theorem | dihopcl 39611 | Closure of an ordered pair (vector) member of a value of isomorphism H. (Contributed by NM, 26-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) & β’ (π β β¨πΉ, πβ© β (πΌβπ)) β β’ (π β (πΉ β π β§ π β πΈ)) | ||
Theorem | xihopellsmN 39612* | Ordered pair membership in a subspace sum of isomorphism H values. (Contributed by NM, 26-Sep-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π΄ = (π β πΈ, π‘ β πΈ β¦ (π β π β¦ ((π βπ) β (π‘βπ)))) & β’ π = ((DVecHβπΎ)βπ) & β’ πΏ = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (β¨πΉ, πβ© β ((πΌβπ) β (πΌβπ)) β βπβπ‘βββπ’((β¨π, π‘β© β (πΌβπ) β§ β¨β, π’β© β (πΌβπ)) β§ (πΉ = (π β β) β§ π = (π‘π΄π’))))) | ||
Theorem | dihopellsm 39613* | Ordered pair membership in a subspace sum of isomorphism H values. (Contributed by NM, 26-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π΄ = (π£ β πΈ, π€ β πΈ β¦ (π β π β¦ ((π£βπ) β (π€βπ)))) & β’ π = ((DVecHβπΎ)βπ) & β’ πΏ = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (β¨πΉ, πβ© β ((πΌβπ) β (πΌβπ)) β βπβπ‘βββπ’((β¨π, π‘β© β (πΌβπ) β§ β¨β, π’β© β (πΌβπ)) β§ (πΉ = (π β β) β§ π = (π‘π΄π’))))) | ||
Theorem | dihord6apre 39614* | Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΊ = (β©β β π (ββπ) = π) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β§ (πΌβπ) β (πΌβπ)) β π β€ π) | ||
Theorem | dihord3 39615 | The isomorphism H for a lattice πΎ is order-preserving in the region under co-atom π. (Contributed by NM, 6-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ π β€ π)) β ((πΌβπ) β (πΌβπ) β π β€ π)) | ||
Theorem | dihord4 39616 | The isomorphism H for a lattice πΎ is order-preserving in the region not under co-atom π. TODO: reformat (π β π΄ β§ Β¬ π β€ π) to eliminate adant*. (Contributed by NM, 6-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ (π β π΅ β§ Β¬ π β€ π)) β ((πΌβπ) β (πΌβπ) β π β€ π)) | ||
Theorem | dihord5b 39617 | Part of proof that isomorphism H is order-preserving. TODO: eliminate 3ad2ant1; combine with other way to have one lhpmcvr2 . (Contributed by NM, 7-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ Β¬ π β€ π)) β§ π β€ π) β (πΌβπ) β (πΌβπ)) | ||
Theorem | dihord6b 39618 | Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β§ π β€ π) β (πΌβπ) β (πΌβπ)) | ||
Theorem | dihord6a 39619 | Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β§ (πΌβπ) β (πΌβπ)) β π β€ π) | ||
Theorem | dihord5apre 39620 | Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ Β¬ π β€ π)) β§ (πΌβπ) β (πΌβπ)) β π β€ π) | ||
Theorem | dihord5a 39621 | Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ Β¬ π β€ π)) β§ (πΌβπ) β (πΌβπ)) β π β€ π) | ||
Theorem | dihord 39622 | The isomorphism H is order-preserving. Part of proof after Lemma N of [Crawley] p. 122 line 6. (Contributed by NM, 7-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β ((πΌβπ) β (πΌβπ) β π β€ π)) | ||
Theorem | dih11 39623 | The isomorphism H is one-to-one. Part of proof after Lemma N of [Crawley] p. 122 line 6. (Contributed by NM, 7-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β ((πΌβπ) = (πΌβπ) β π = π)) | ||
Theorem | dihf11lem 39624 | Functionality of the isomorphism H. (Contributed by NM, 6-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) β β’ ((πΎ β HL β§ π β π») β πΌ:π΅βΆπ) | ||
Theorem | dihf11 39625 | The isomorphism H for a lattice πΎ is a one-to-one function. Part of proof after Lemma N of [Crawley] p. 122 line 6. (Contributed by NM, 7-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) β β’ ((πΎ β HL β§ π β π») β πΌ:π΅β1-1βπ) | ||
Theorem | dihfn 39626 | Functionality and domain of isomorphism H. (Contributed by NM, 9-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ ((πΎ β HL β§ π β π») β πΌ Fn π΅) | ||
Theorem | dihdm 39627 | Domain of isomorphism H. (Contributed by NM, 9-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ ((πΎ β HL β§ π β π») β dom πΌ = π΅) | ||
Theorem | dihcl 39628 | Closure of isomorphism H. (Contributed by NM, 8-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΅) β (πΌβπ) β ran πΌ) | ||
Theorem | dihcnvcl 39629 | Closure of isomorphism H converse. (Contributed by NM, 8-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β (β‘πΌβπ) β π΅) | ||
Theorem | dihcnvid1 39630 | The converse isomorphism of an isomorphism. (Contributed by NM, 5-Aug-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΅) β (β‘πΌβ(πΌβπ)) = π) | ||
Theorem | dihcnvid2 39631 | The isomorphism of a converse isomorphism. (Contributed by NM, 5-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β (πΌβ(β‘πΌβπ)) = π) | ||
Theorem | dihcnvord 39632 | Ordering property for converse of isomorphism H. (Contributed by NM, 17-Aug-2014.) |
β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β ((β‘πΌβπ) β€ (β‘πΌβπ) β π β π)) | ||
Theorem | dihcnv11 39633 | The converse of isomorphism H is one-to-one. (Contributed by NM, 17-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β ((β‘πΌβπ) = (β‘πΌβπ) β π = π)) | ||
Theorem | dihsslss 39634 | The isomorphism H maps to subspaces. (Contributed by NM, 14-Mar-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = (LSubSpβπ) β β’ ((πΎ β HL β§ π β π») β ran πΌ β π) | ||
Theorem | dihrnlss 39635 | The isomorphism H maps to subspaces. (Contributed by NM, 14-Mar-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = (LSubSpβπ) β β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β π β π) | ||
Theorem | dihrnss 39636 | The isomorphism H maps to a set of vectors. (Contributed by NM, 14-Mar-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = (Baseβπ) β β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β π β π) | ||
Theorem | dihvalrel 39637 | The value of isomorphism H is a relation. (Contributed by NM, 9-Mar-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ ((πΎ β HL β§ π β π») β Rel (πΌβπ)) | ||
Theorem | dih0 39638 | The value of isomorphism H at the lattice zero is the singleton of the zero vector i.e. the zero subspace. (Contributed by NM, 9-Mar-2014.) |
β’ 0 = (0.βπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (0gβπ) β β’ ((πΎ β HL β§ π β π») β (πΌβ 0 ) = {π}) | ||
Theorem | dih0bN 39639 | A lattice element is zero iff its isomorphism is the zero subspace. (Contributed by NM, 16-Aug-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ 0 = (0.βπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (0gβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) β β’ (π β (π = 0 β (πΌβπ) = {π})) | ||
Theorem | dih0vbN 39640 | A vector is zero iff its span is the isomorphism of lattice zero. (Contributed by NM, 16-Aug-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ 0 = (0.βπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (0gβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (π = π β (πβ{π}) = (πΌβ 0 ))) | ||
Theorem | dih0cnv 39641 | The isomorphism H converse value of the zero subspace is the lattice zero. (Contributed by NM, 19-Jun-2014.) |
β’ π» = (LHypβπΎ) & β’ 0 = (0.βπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (0gβπ) β β’ ((πΎ β HL β§ π β π») β (β‘πΌβ{π}) = 0 ) | ||
Theorem | dih0rn 39642 | The zero subspace belongs to the range of isomorphism H. (Contributed by NM, 27-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ 0 = (0gβπ) β β’ ((πΎ β HL β§ π β π») β { 0 } β ran πΌ) | ||
Theorem | dih0sb 39643 | A subspace is zero iff the converse of its isomorphism is lattice zero. (Contributed by NM, 17-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ 0 = (0.βπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (0gβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) β β’ (π β (π = {π} β (β‘πΌβπ) = 0 )) | ||
Theorem | dih1 39644 | The value of isomorphism H at the lattice unity is the set of all vectors. (Contributed by NM, 13-Mar-2014.) |
β’ 1 = (1.βπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) β β’ ((πΎ β HL β§ π β π») β (πΌβ 1 ) = π) | ||
Theorem | dih1rn 39645 | The full vector space belongs to the range of isomorphism H. (Contributed by NM, 19-Jun-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) β β’ ((πΎ β HL β§ π β π») β π β ran πΌ) | ||
Theorem | dih1cnv 39646 | The isomorphism H converse value of the full vector space is the lattice one. (Contributed by NM, 19-Jun-2014.) |
β’ π» = (LHypβπΎ) & β’ 1 = (1.βπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) β β’ ((πΎ β HL β§ π β π») β (β‘πΌβπ) = 1 ) | ||
Theorem | dihwN 39647* | Value of isomorphism H at the fiducial hyperplane π. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ 0 = (π β π β¦ ( I βΎ π΅)) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β (πΌβπ) = (π Γ { 0 })) | ||
Theorem | dihmeetlem1N 39648* | Isomorphism H of a conjunction. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β§ = (meetβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΊ = (β©β β π (ββπ) = π) & β’ 0 = (β β π β¦ ( I βΎ π΅)) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ (π β π΅ β§ π β€ π)) β (πΌβ(π β§ π)) = ((πΌβπ) β© (πΌβπ))) | ||
Theorem | dihglblem5apreN 39649* | A conjunction property of isomorphism H. TODO: reduce antecedent size; general review for shorter proof. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β§ = (meetβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΊ = (β©β β π (ββπ) = π) & β’ 0 = (β β π β¦ ( I βΎ π΅)) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π)) β (πΌβ(π β§ π)) = ((πΌβπ) β© (πΌβπ))) | ||
Theorem | dihglblem5aN 39650 | A conjunction property of isomorphism H. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β§ = (meetβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΅) β (πΌβ(π β§ π)) = ((πΌβπ) β© (πΌβπ))) | ||
Theorem | dihglblem2aN 39651* | Lemma for isomorphism H of a GLB. (Contributed by NM, 19-Mar-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ π = {π’ β π΅ β£ βπ£ β π π’ = (π£ β§ π)} β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β β )) β π β β ) | ||
Theorem | dihglblem2N 39652* | The GLB of a set of lattice elements π is the same as that of the set π with elements of π cut down to be under π. (Contributed by NM, 19-Mar-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ π = {π’ β π΅ β£ βπ£ β π π’ = (π£ β§ π)} β β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ (πΊβπ) β€ π) β (πΊβπ) = (πΊβπ)) | ||
Theorem | dihglblem3N 39653* | Isomorphism H of a lattice glb. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ π = {π’ β π΅ β£ βπ£ β π π’ = (π£ β§ π)} & β’ π½ = ((DIsoBβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β β ) β§ (πΊβπ) β€ π) β (πΌβ(πΊβπ)) = β© π₯ β π (πΌβπ₯)) | ||
Theorem | dihglblem3aN 39654* | Isomorphism H of a lattice glb. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ π = {π’ β π΅ β£ βπ£ β π π’ = (π£ β§ π)} & β’ π½ = ((DIsoBβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β β ) β§ (πΊβπ) β€ π) β (πΌβ(πΊβπ)) = β© π₯ β π (πΌβπ₯)) | ||
Theorem | dihglblem4 39655* | Isomorphism H of a lattice glb. (Contributed by NM, 21-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ π = {π’ β π΅ β£ βπ£ β π π’ = (π£ β§ π)} & β’ π½ = ((DIsoBβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β β )) β (πΌβ(πΊβπ)) β β© π₯ β π (πΌβπ₯)) | ||
Theorem | dihglblem5 39656* | Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = (LSubSpβπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β β )) β β© π₯ β π (πΌβπ₯) β π) | ||
Theorem | dihmeetlem2N 39657 | Isomorphism H of a conjunction. (Contributed by NM, 22-Mar-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β§ = (meetβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΊ = (β©β β π (ββπ) = π) & β’ 0 = (β β π β¦ ( I βΎ π΅)) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ π β€ π)) β (πΌβ(π β§ π)) = ((πΌβπ) β© (πΌβπ))) | ||
Theorem | dihglbcpreN 39658* | Isomorphism H of a lattice glb when the glb is not under the fiducial hyperplane π. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΉ = (β©π β π (πβπ) = π) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β β ) β§ Β¬ (πΊβπ) β€ π) β (πΌβ(πΊβπ)) = β© π₯ β π (πΌβπ₯)) | ||
Theorem | dihglbcN 39659* | Isomorphism H of a lattice glb when the glb is not under the fiducial hyperplane π. (Contributed by NM, 26-Mar-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β€ = (leβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β β ) β§ Β¬ (πΊβπ) β€ π) β (πΌβ(πΊβπ)) = β© π₯ β π (πΌβπ₯)) | ||
Theorem | dihmeetcN 39660 | Isomorphism H of a lattice meet when the meet is not under the fiducial hyperplane π. (Contributed by NM, 26-Mar-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β π΅) β§ Β¬ (π β§ π) β€ π) β (πΌβ(π β§ π)) = ((πΌβπ) β© (πΌβπ))) | ||
Theorem | dihmeetbN 39661 | Isomorphism H of a lattice meet when one element is under the fiducial hyperplane π. (Contributed by NM, 26-Mar-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ (π β π΅ β§ π β€ π)) β (πΌβ(π β§ π)) = ((πΌβπ) β© (πΌβπ))) | ||
Theorem | dihmeetbclemN 39662 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β π΅) β§ (π β§ π) β€ π) β (πΌβ(π β§ π)) = (((πΌβπ) β© (πΌβπ)) β© (πΌβπ))) | ||
Theorem | dihmeetlem3N 39663 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β π΅) β§ (π β§ π) β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β π β π ) | ||
Theorem | dihmeetlem4preN 39664* | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ 0 = (0gβπ) & β’ πΊ = (β©π β π (πβπ) = π) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β ((πΌβπ) β© (πΌβ(π β§ π))) = { 0 }) | ||
Theorem | dihmeetlem4N 39665 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ 0 = (0gβπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β ((πΌβπ) β© (πΌβ(π β§ π))) = { 0 }) | ||
Theorem | dihmeetlem5 39666 | Part of proof that isomorphism H is order-preserving . (Contributed by NM, 6-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΅ β§ π β π΅) β§ (π β π΄ β§ π β€ π)) β (π β§ (π β¨ π)) = ((π β§ π) β¨ π)) | ||
Theorem | dihmeetlem6 39667 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β§ ((π β π΄ β§ Β¬ π β€ π) β§ π β€ π)) β Β¬ (π β§ (π β¨ π)) β€ π) | ||
Theorem | dihmeetlem7N 39668 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΅ β§ π β π΅) β§ (π β π΄ β§ Β¬ π β€ π)) β (((π β§ π) β¨ π) β§ π) = (π β§ π)) | ||
Theorem | dihjatc1 39669 | Lemma for isomorphism H of a lattice meet. TODO: shorter proof if we change β¨ order of (π β§ π) β¨ π here and down? (Contributed by NM, 6-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β€ π β§ (π β§ π) β€ π)) β (πΌβ((π β§ π) β¨ π)) = ((πΌβπ) β (πΌβ(π β§ π)))) | ||
Theorem | dihjatc2N 39670 | Isomorphism H of join with an atom. (Contributed by NM, 26-Aug-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β€ π β§ (π β§ π) β€ π)) β (πΌβ(π β¨ (π β§ π))) = ((πΌβπ) β (πΌβ(π β§ π)))) | ||
Theorem | dihjatc3 39671 | Isomorphism H of join with an atom. (Contributed by NM, 26-Aug-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β€ π β§ (π β§ π) β€ π)) β (πΌβ((π β§ π) β¨ π)) = ((πΌβ(π β§ π)) β (πΌβπ))) | ||
Theorem | dihmeetlem8N 39672 | Lemma for isomorphism H of a lattice meet. TODO: shorter proof if we change β¨ order of (π β§ π) β¨ π here and down? (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β€ π β§ (π β§ π) β€ π)) β (πΌβ((π β§ π) β¨ π)) = ((πΌβπ) β (πΌβ(π β§ π)))) | ||
Theorem | dihmeetlem9N 39673 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β π΅) β§ π β π΄) β (((πΌβπ) β (πΌβ(π β§ π))) β© (πΌβπ)) = ((πΌβ(π β§ π)) β ((πΌβπ) β© (πΌβπ)))) | ||
Theorem | dihmeetlem10N 39674 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β§ ((π β π΄ β§ Β¬ π β€ π) β§ π β€ π)) β (πΌβ((π β§ π) β¨ π)) = ((πΌβπ) β© (πΌβ(π β¨ π)))) | ||
Theorem | dihmeetlem11N 39675 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β§ ((π β π΄ β§ Β¬ π β€ π) β§ π β€ π)) β ((πΌβ((π β§ π) β¨ π)) β© (πΌβπ)) = ((πΌβπ) β© (πΌβπ))) | ||
Theorem | dihmeetlem12N 39676 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β§ ((π β π΄ β§ Β¬ π β€ π) β§ π β€ π β§ (π β§ π) β€ π)) β ((πΌβ(π β§ π)) β ((πΌβπ) β© (πΌβπ))) = ((πΌβπ) β© (πΌβπ))) | ||
Theorem | dihmeetlem13N 39677* | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ 0 = (0gβπ) & β’ πΉ = (β©β β π (ββπ) = π) & β’ πΊ = (β©β β π (ββπ) = π ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π ) β ((πΌβπ) β© (πΌβπ )) = { 0 }) | ||
Theorem | dihmeetlem14N 39678 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β§ ((π β π΄ β§ Β¬ π β€ π) β§ π β€ π β§ (π β§ π) β€ π)) β ((πΌβ(π β§ π)) β ((πΌβπ) β© (πΌβπ))) = ((πΌβπ) β© (πΌβπ))) | ||
Theorem | dihmeetlem15N 39679 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ 0 = (0gβπ) β β’ ((((πΎ β HL β§ π β π») β§ π β π΅ β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ π β€ π β§ (π β§ π) β€ π)) β ((πΌβπ) β© (πΌβπ)) = { 0 }) | ||
Theorem | dihmeetlem16N 39680 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ π β π΅ β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ π β€ π β§ (π β§ π) β€ π)) β (πΌβ(π β§ π)) = ((πΌβπ) β© (πΌβπ))) | ||
Theorem | dihmeetlem17N 39681 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ 0 = (0.βπΎ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ (π β§ π) β€ π β§ π β€ π)) β (π β§ π) = 0 ) | ||
Theorem | dihmeetlem18N 39682 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ 0 = (0gβπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ π β π΅) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β€ π β§ π β€ π β§ (π β§ π) β€ π))) β ((πΌβπ) β© (πΌβπ)) = { 0 }) | ||
Theorem | dihmeetlem19N 39683 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ π β π΅) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β€ π β§ π β€ π β§ (π β§ π) β€ π))) β (πΌβ(π β§ π)) = ((πΌβπ) β© (πΌβπ))) | ||
Theorem | dihmeetlem20N 39684 | Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΅ β§ Β¬ π β€ π) β§ (π β§ π) β€ π)) β (πΌβ(π β§ π)) = ((πΌβπ) β© (πΌβπ))) | ||
Theorem | dihmeetALTN 39685 | Isomorphism H of a lattice meet. This version does not depend on the atomisticity of the constructed vector space. TODO: Delete? (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β§ = (meetβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β (πΌβ(π β§ π)) = ((πΌβπ) β© (πΌβπ))) | ||
Theorem | dih1dimatlem0 39686* | Lemma for dih1dimat 39688. (Contributed by NM, 11-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π΄ = (LSAtomsβπ) & β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΆ = (AtomsβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ πΉ = (Scalarβπ) & β’ π½ = (invrβπΉ) & β’ π = (Baseβπ) & β’ Β· = ( Β·π βπ) & β’ π = (LSubSpβπ) & β’ π = (LSpanβπ) & β’ 0 = (0gβπ) & β’ πΊ = (β©β β π (ββπ) = (((π½βπ )βπ)βπ)) β β’ (((πΎ β HL β§ π β π») β§ (π β π β§ π β πΈ) β§ π β π) β ((π = (πβπΊ) β§ π β πΈ) β ((π β π β§ π β πΈ) β§ βπ‘ β πΈ (π = (π‘βπ) β§ π = (π‘ β π ))))) | ||
Theorem | dih1dimatlem 39687* | Lemma for dih1dimat 39688. (Contributed by NM, 10-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π΄ = (LSAtomsβπ) & β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ πΆ = (AtomsβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = (β β π β¦ ( I βΎ π΅)) & β’ πΉ = (Scalarβπ) & β’ π½ = (invrβπΉ) & β’ π = (Baseβπ) & β’ Β· = ( Β·π βπ) & β’ π = (LSubSpβπ) & β’ π = (LSpanβπ) & β’ 0 = (0gβπ) & β’ πΊ = (β©β β π (ββπ) = (((π½βπ )βπ)βπ)) β β’ (((πΎ β HL β§ π β π») β§ π· β π΄) β π· β ran πΌ) | ||
Theorem | dih1dimat 39688 | Any 1-dimensional subspace is a value of isomorphism H. (Contributed by NM, 11-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π΄ = (LSAtomsβπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΄) β π β ran πΌ) | ||
Theorem | dihlsprn 39689 | The span of a vector belongs to the range of isomorphism H. (Contributed by NM, 27-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β (πβ{π}) β ran πΌ) | ||
Theorem | dihlspsnssN 39690 | A subspace included in a 1-dim subspace belongs to the range of isomorphism H. (Contributed by NM, 26-Apr-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSubSpβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β (πβ{π})) β (π β π β π β ran πΌ)) | ||
Theorem | dihlspsnat 39691 | The inverse isomorphism H of the span of a singleton is a Hilbert lattice atom. (Contributed by NM, 27-Apr-2014.) |
β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β 0 ) β (β‘πΌβ(πβ{π})) β π΄) | ||
Theorem | dihatlat 39692 | The isomorphism H of an atom is a 1-dim subspace. (Contributed by NM, 28-Apr-2014.) |
β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ πΏ = (LSAtomsβπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΄) β (πΌβπ) β πΏ) | ||
Theorem | dihat 39693 | There exists at least one atom in the subspaces of vector space H. (Contributed by NM, 12-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β (πΌβπ) β π΄) | ||
Theorem | dihpN 39694* | The value of isomorphism H at the fiducial atom π is determined by the vector β¨0, πβ© (the zero translation ltrnid 38493 and a nonzero member of the endomorphism ring). In particular, π can be replaced with the ring unity ( I βΎ π). (Contributed by NM, 26-Aug-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = (π β π β¦ ( I βΎ π΅)) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β πΈ β§ π β π)) β β’ (π β (πΌβπ) = (πβ{β¨( I βΎ π΅), πβ©})) | ||
Theorem | dihlatat 39695 | The reverse isomorphism H of a 1-dim subspace is an atom. (Contributed by NM, 28-Apr-2014.) |
β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ πΏ = (LSAtomsβπ) β β’ (((πΎ β HL β§ π β π») β§ π β πΏ) β (β‘πΌβπ) β π΄) | ||
Theorem | dihatexv 39696* | There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 16-Aug-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) β β’ (π β (π β π΄ β βπ₯ β (π β { 0 })(πΌβπ) = (πβ{π₯}))) | ||
Theorem | dihatexv2 39697* | There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 17-Aug-2014.) |
β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β (π β π΄ β βπ₯ β (π β { 0 })π = (β‘πΌβ(πβ{π₯})))) | ||
Theorem | dihglblem6 39698* | Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ π· = (LSAtomsβπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β β )) β (πΌβ(πΊβπ)) = β© π₯ β π (πΌβπ₯)) | ||
Theorem | dihglb 39699* | Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β β )) β (πΌβ(πΊβπ)) = β© π₯ β π (πΌβπ₯)) | ||
Theorem | dihglb2 39700* | Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β (πΌβ(πΊβ{π₯ β π΅ β£ π β (πΌβπ₯)})) = β© {π¦ β ran πΌ β£ π β π¦}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |