HomeHome Metamath Proof Explorer
Theorem List (p. 397 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 39601-39700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlcfrlem38 39601* Lemma for lcfr 39606. Combine lcfrlem27 39590 and lcfrlem37 39600. (Contributed by NM, 11-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    + = (+g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (LSubSp‘𝐷)    &   𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝑄)    &   (𝜑𝐺𝐶)    &   (𝜑𝑋𝐸)    &   (𝜑𝑌𝐸)    &    0 = (0g𝑈)    &   (𝜑𝑋0 )    &   (𝜑𝑌0 )    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &   (𝜑𝐼𝐵)    &   (𝜑𝐼0 )    &   𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝑆)    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))       (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
 
Theoremlcfrlem39 39602* Lemma for lcfr 39606. Eliminate 𝐽. (Contributed by NM, 11-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    + = (+g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (LSubSp‘𝐷)    &   𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝑄)    &   (𝜑𝐺𝐶)    &   (𝜑𝑋𝐸)    &   (𝜑𝑌𝐸)    &    0 = (0g𝑈)    &   (𝜑𝑋0 )    &   (𝜑𝑌0 )    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &   (𝜑𝐼𝐵)    &   (𝜑𝐼0 )       (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
 
Theoremlcfrlem40 39603* Lemma for lcfr 39606. Eliminate 𝐵 and 𝐼. (Contributed by NM, 11-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    + = (+g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (LSubSp‘𝐷)    &   𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝑄)    &   (𝜑𝐺𝐶)    &   (𝜑𝑋𝐸)    &   (𝜑𝑌𝐸)    &    0 = (0g𝑈)    &   (𝜑𝑋0 )    &   (𝜑𝑌0 )    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))       (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
 
Theoremlcfrlem41 39604* Lemma for lcfr 39606. Eliminate span condition. (Contributed by NM, 11-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    + = (+g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (LSubSp‘𝐷)    &   𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝑄)    &   (𝜑𝐺𝐶)    &   (𝜑𝑋𝐸)    &   (𝜑𝑌𝐸)    &    0 = (0g𝑈)    &   (𝜑𝑋0 )    &   (𝜑𝑌0 )       (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
 
Theoremlcfrlem42 39605* Lemma for lcfr 39606. Eliminate nonzero condition. (Contributed by NM, 11-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    + = (+g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (LSubSp‘𝐷)    &   𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝑄)    &   (𝜑𝐺𝐶)    &   (𝜑𝑋𝐸)    &   (𝜑𝑌𝐸)       (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
 
Theoremlcfr 39606* Reconstruction of a subspace from a dual subspace of functionals with closed kernels. Our proof was suggested by Mario Carneiro, 20-Feb-2015. (Contributed by NM, 5-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑇 = (LSubSp‘𝐷)    &   𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝑄 = 𝑔𝑅 ( ‘(𝐿𝑔))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑅𝑇)    &   (𝜑𝑅𝐶)       (𝜑𝑄𝑆)
 
Syntaxclcd 39607 Extend class notation with vector space of functionals with closed kernels.
class LCDual
 
Definitiondf-lcdual 39608* Dual vector space of functionals with closed kernels. Note: we could also define this directly without mapd by using mapdrn 39670. TODO: see if it makes sense to go back and replace some of the LDual stuff with this. TODO: We could simplify df-mapd 39646 using (Base‘((LCDual‘𝐾)‘𝑊)). (Contributed by NM, 13-Mar-2015.)
LCDual = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ((LDual‘((DVecH‘𝑘)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ (((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)})))
 
Theoremlcdfval 39609* Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
𝐻 = (LHyp‘𝐾)       (𝐾𝑋 → (LCDual‘𝐾) = (𝑤𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)})))
 
Theoremlcdval 39610* Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   (𝜑 → (𝐾𝑋𝑊𝐻))       (𝜑𝐶 = (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}))
 
Theoremlcdval2 39611* Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   (𝜑 → (𝐾𝑋𝑊𝐻))    &   𝐵 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}       (𝜑𝐶 = (𝐷s 𝐵))
 
Theoremlcdlvec 39612 The dual vector space of functionals with closed kernels is a left vector space. (Contributed by NM, 14-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝐶 ∈ LVec)
 
Theoremlcdlmod 39613 The dual vector space of functionals with closed kernels is a left module. (Contributed by NM, 13-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝐶 ∈ LMod)
 
Theoremlcdvbase 39614* Vector base set of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝐶)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐵 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝑉 = 𝐵)
 
Theoremlcdvbasess 39615 The vector base set of the closed kernel dual space is a set of functionals. (Contributed by NM, 15-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝐶)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝑉𝐹)
 
Theoremlcdvbaselfl 39616 A vector in the base set of the closed kernel dual space is a functional. (Contributed by NM, 28-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝐶)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)       (𝜑𝑋𝐹)
 
Theoremlcdvbasecl 39617 Closure of the value of a vector (functional) in the closed kernel dual space. (Contributed by NM, 28-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝑆)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝐸 = (Base‘𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐹𝐸)    &   (𝜑𝑋𝑉)       (𝜑 → (𝐹𝑋) ∈ 𝑅)
 
Theoremlcdvadd 39618 Vector addition for the closed kernel vector space dual. (Contributed by NM, 10-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &    = (+g𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑 = + )
 
Theoremlcdvaddval 39619 The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 10-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑅 = (Scalar‘𝑈)    &    + = (+g𝑅)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝐷 = (Base‘𝐶)    &    = (+g𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐹𝐷)    &   (𝜑𝐺𝐷)    &   (𝜑𝑋𝑉)       (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹𝑋) + (𝐺𝑋)))
 
Theoremlcdsca 39620 The ring of scalars of the closed kernel dual space. (Contributed by NM, 16-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (Scalar‘𝑈)    &   𝑂 = (oppr𝐹)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑅 = (Scalar‘𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝑅 = 𝑂)
 
Theoremlcdsbase 39621 Base set of scalar ring for the closed kernel dual of a vector space. (Contributed by NM, 18-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (Scalar‘𝑈)    &   𝐿 = (Base‘𝐹)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝐶)    &   𝑅 = (Base‘𝑆)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝑅 = 𝐿)
 
Theoremlcdsadd 39622 Scalar addition for the closed kernel vector space dual. (Contributed by NM, 6-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (Scalar‘𝑈)    &    + = (+g𝐹)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝐶)    &    = (+g𝑆)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑 = + )
 
Theoremlcdsmul 39623 Scalar multiplication for the closed kernel vector space dual. (Contributed by NM, 20-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (Scalar‘𝑈)    &   𝐿 = (Base‘𝐹)    &    · = (.r𝐹)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝐶)    &    = (.r𝑆)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝐿)    &   (𝜑𝑌𝐿)       (𝜑 → (𝑋 𝑌) = (𝑌 · 𝑋))
 
Theoremlcdvs 39624 Scalar product for the closed kernel vector space dual. (Contributed by NM, 28-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐷 = (LDual‘𝑈)    &    · = ( ·𝑠𝐷)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &    = ( ·𝑠𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑 = · )
 
Theoremlcdvsval 39625 Value of scalar product operation value for the closed kernel vector space dual. (Contributed by NM, 28-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝑆)    &    · = (.r𝑆)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝐹 = (Base‘𝐶)    &    = ( ·𝑠𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑅)    &   (𝜑𝐺𝐹)    &   (𝜑𝐴𝑉)       (𝜑 → ((𝑋 𝐺)‘𝐴) = ((𝐺𝐴) · 𝑋))
 
Theoremlcdvscl 39626 The scalar product operation value is a functional. (Contributed by NM, 20-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝑆)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝐶)    &    · = ( ·𝑠𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑅)    &   (𝜑𝐺𝑉)       (𝜑 → (𝑋 · 𝐺) ∈ 𝑉)
 
Theoremlcdlssvscl 39627 Closure of scalar product in a closed kernel dual vector space. (Contributed by NM, 20-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝐹)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝐶)    &    · = ( ·𝑠𝐶)    &   𝑆 = (LSubSp‘𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐿𝑆)    &   (𝜑𝑋𝑅)    &   (𝜑𝑌𝐿)       (𝜑 → (𝑋 · 𝑌) ∈ 𝐿)
 
Theoremlcdvsass 39628 Associative law for scalar product in a closed kernel dual vector space. (Contributed by NM, 20-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑅 = (Scalar‘𝑈)    &   𝐿 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝐹 = (Base‘𝐶)    &    = ( ·𝑠𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝐿)    &   (𝜑𝑌𝐿)    &   (𝜑𝐺𝐹)       (𝜑 → ((𝑌 · 𝑋) 𝐺) = (𝑋 (𝑌 𝐺)))
 
Theoremlcd0 39629 The zero scalar of the closed kernel dual of a vector space. (Contributed by NM, 20-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (Scalar‘𝑈)    &    0 = (0g𝐹)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝐶)    &   𝑂 = (0g𝑆)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝑂 = 0 )
 
Theoremlcd1 39630 The unit scalar of the closed kernel dual of a vector space. (Contributed by NM, 20-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (Scalar‘𝑈)    &    1 = (1r𝐹)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝐶)    &   𝐼 = (1r𝑆)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝐼 = 1 )
 
Theoremlcdneg 39631 The unit scalar of the closed kernel dual of a vector space. (Contributed by NM, 11-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑅 = (Scalar‘𝑈)    &   𝑀 = (invg𝑅)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝐶)    &   𝑁 = (invg𝑆)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝑁 = 𝑀)
 
Theoremlcd0v 39632 The zero functional in the set of functionals with closed kernels. (Contributed by NM, 20-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑅 = (Scalar‘𝑈)    &    0 = (0g𝑅)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑂 = (0g𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝑂 = (𝑉 × { 0 }))
 
Theoremlcd0v2 39633 The zero functional in the set of functionals with closed kernels. (Contributed by NM, 27-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐷 = (LDual‘𝑈)    &    0 = (0g𝐷)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑂 = (0g𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝑂 = 0 )
 
Theoremlcd0vvalN 39634 Value of the zero functional at any vector. (Contributed by NM, 28-Mar-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (Scalar‘𝑈)    &    0 = (0g𝑆)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑂 = (0g𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)       (𝜑 → (𝑂𝑋) = 0 )
 
Theoremlcd0vcl 39635 Closure of the zero functional in the set of functionals with closed kernels. (Contributed by NM, 15-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝐶)    &   𝑂 = (0g𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝑂𝑉)
 
Theoremlcd0vs 39636 A scalar zero times a functional is the zero functional. (Contributed by NM, 20-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑅 = (Scalar‘𝑈)    &    0 = (0g𝑅)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝐶)    &    · = ( ·𝑠𝐶)    &   𝑂 = (0g𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝑉)       (𝜑 → ( 0 · 𝐺) = 𝑂)
 
Theoremlcdvs0N 39637 A scalar times the zero functional is the zero functional. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝑆)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &    · = ( ·𝑠𝐶)    &    0 = (0g𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑅)       (𝜑 → (𝑋 · 0 ) = 0 )
 
Theoremlcdvsub 39638 The value of vector subtraction in the closed kernel dual space. (Contributed by NM, 22-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝑈)    &   𝑁 = (invg𝑆)    &    1 = (1r𝑆)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝐶)    &    + = (+g𝐶)    &    · = ( ·𝑠𝐶)    &    = (-g𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐹𝑉)    &   (𝜑𝐺𝑉)       (𝜑 → (𝐹 𝐺) = (𝐹 + ((𝑁1 ) · 𝐺)))
 
Theoremlcdvsubval 39639 The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 11-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝑆 = (-g𝑅)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝐷 = (Base‘𝐶)    &    = (-g𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐹𝐷)    &   (𝜑𝐺𝐷)    &   (𝜑𝑋𝑉)       (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹𝑋)𝑆(𝐺𝑋)))
 
Theoremlcdlss 39640* Subspaces of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝐶)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑇 = (LSubSp‘𝐷)    &   𝐵 = {𝑓𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)}    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝑆 = (𝑇 ∩ 𝒫 𝐵))
 
Theoremlcdlss2N 39641 Subspaces of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝐶)    &   𝑉 = (Base‘𝐶)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐷 = (LDual‘𝑈)    &   𝑇 = (LSubSp‘𝐷)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝑆 = (𝑇 ∩ 𝒫 𝑉))
 
Theoremlcdlsp 39642 Span in the set of functionals with closed kernels. (Contributed by NM, 28-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐷 = (LDual‘𝑈)    &   𝑀 = (LSpan‘𝐷)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝐹 = (Base‘𝐶)    &   𝑁 = (LSpan‘𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝐹)       (𝜑 → (𝑁𝐺) = (𝑀𝐺))
 
TheoremlcdlkreqN 39643 Colinear functionals have equal kernels. (Contributed by NM, 28-Mar-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐿 = (LKer‘𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &    0 = (0g𝐶)    &   𝑁 = (LSpan‘𝐶)    &   𝑉 = (Base‘𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐼𝑉)    &   (𝜑𝐺 ∈ (𝑁‘{𝐼}))    &   (𝜑𝐺0 )       (𝜑 → (𝐿𝐺) = (𝐿𝐼))
 
Theoremlcdlkreq2N 39644 Colinear functionals have equal kernels. (Contributed by NM, 28-Mar-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝑆)    &    0 = (0g𝑆)    &   𝐿 = (LKer‘𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝐶)    &    · = ( ·𝑠𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐴 ∈ (𝑅 ∖ { 0 }))    &   (𝜑𝐼𝑉)    &   (𝜑𝐺 = (𝐴 · 𝐼))       (𝜑 → (𝐿𝐺) = (𝐿𝐼))
 
Syntaxcmpd 39645 Extend class notation with projectivity from subspaces of vector space H to subspaces of functionals with closed kernels.
class mapd
 
Definitiondf-mapd 39646* Extend class notation with a one-to-one onto (mapd1o 39669), order-preserving (mapdord 39659) map, called a projectivity (definition of projectivity in [Baer] p. 40), from subspaces of vector space H to those subspaces of the dual space having functionals with closed kernels. (Contributed by NM, 25-Jan-2015.)
mapd = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ ((((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) ∧ (((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠)})))
 
Theoremmapdffval 39647* Projectivity from vector space H to dual space. (Contributed by NM, 25-Jan-2015.)
𝐻 = (LHyp‘𝐾)       (𝐾𝑋 → (mapd‘𝐾) = (𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)})))
 
Theoremmapdfval 39648* Projectivity from vector space H to dual space. (Contributed by NM, 25-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑀 = ((mapd‘𝐾)‘𝑊)       ((𝐾𝑋𝑊𝐻) → 𝑀 = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
 
Theoremmapdval 39649* Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   (𝜑 → (𝐾𝑋𝑊𝐻))    &   (𝜑𝑇𝑆)       (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑇)})
 
Theoremmapdvalc 39650* Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   (𝜑 → (𝐾𝑋𝑊𝐻))    &   (𝜑𝑇𝑆)    &   𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}       (𝜑 → (𝑀𝑇) = {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑇})
 
Theoremmapdval2N 39651* Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑇𝑆)    &   𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}       (𝜑 → (𝑀𝑇) = {𝑓𝐶 ∣ ∃𝑣𝑇 (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑣})})
 
Theoremmapdval3N 39652* Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑇𝑆)    &   𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}       (𝜑 → (𝑀𝑇) = 𝑣𝑇 {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) = (𝑁‘{𝑣})})
 
Theoremmapdval4N 39653* Value of projectivity from vector space H to dual space. TODO: 1. This is shorter than others - make it the official def? (but is not as obvious that it is 𝐶) 2. The unneeded direction of lcfl8a 39524 has awkward - add another thm with only one direction of it? 3. Swap 𝑂‘{𝑣} and 𝐿𝑓? (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑇𝑆)       (𝜑 → (𝑀𝑇) = {𝑓𝐹 ∣ ∃𝑣𝑇 (𝑂‘{𝑣}) = (𝐿𝑓)})
 
Theoremmapdval5N 39654* Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑇𝑆)       (𝜑 → (𝑀𝑇) = 𝑣𝑇 {𝑓𝐹 ∣ (𝑂‘{𝑣}) = (𝐿𝑓)})
 
Theoremmapdordlem1a 39655* Lemma for mapdord 39659. (Contributed by NM, 27-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑌 = (LSHyp‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝑇 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) ∈ 𝑌}    &   𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑 → (𝐽𝑇 ↔ (𝐽𝐶 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌)))
 
Theoremmapdordlem1bN 39656* Lemma for mapdord 39659. (Contributed by NM, 27-Jan-2015.) (New usage is discouraged.)
𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}       (𝐽𝐶 ↔ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) = (𝐿𝐽)))
 
Theoremmapdordlem1 39657* Lemma for mapdord 39659. (Contributed by NM, 27-Jan-2015.)
𝑇 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) ∈ 𝑌}       (𝐽𝑇 ↔ (𝐽𝐹 ∧ (𝑂‘(𝑂‘(𝐿𝐽))) ∈ 𝑌))
 
Theoremmapdordlem2 39658* Lemma for mapdord 39659. Ordering property of projectivity 𝑀. TODO: This was proved using some hacked-up older proofs. Maybe simplify; get rid of the 𝑇 hypothesis. (Contributed by NM, 27-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝐴 = (LSAtoms‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐽 = (LSHyp‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝑇 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) ∈ 𝐽}    &   𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}       (𝜑 → ((𝑀𝑋) ⊆ (𝑀𝑌) ↔ 𝑋𝑌))
 
Theoremmapdord 39659 Ordering property of the map defined by df-mapd 39646. Property (b) of [Baer] p. 40. (Contributed by NM, 27-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)       (𝜑 → ((𝑀𝑋) ⊆ (𝑀𝑌) ↔ 𝑋𝑌))
 
Theoremmapd11 39660 The map defined by df-mapd 39646 is one-to-one. Property (c) of [Baer] p. 40. (Contributed by NM, 12-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)       (𝜑 → ((𝑀𝑋) = (𝑀𝑌) ↔ 𝑋 = 𝑌))
 
TheoremmapddlssN 39661 The mapping of a subspace of vector space H to the dual space is a subspace of the dual space. TODO: Make this obsolete, use mapdcl2 39677 instead. (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑇 = (LSubSp‘𝐷)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑅𝑆)       (𝜑 → (𝑀𝑅) ∈ 𝑇)
 
Theoremmapdsn 39662* Value of the map defined by df-mapd 39646 at the span of a singleton. (Contributed by NM, 16-Feb-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)       (𝜑 → (𝑀‘(𝑁‘{𝑋})) = {𝑓𝐹 ∣ (𝑂‘{𝑋}) ⊆ (𝐿𝑓)})
 
Theoremmapdsn2 39663* Value of the map defined by df-mapd 39646 at the span of a singleton. (Contributed by NM, 16-Feb-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑 → (𝐿𝐺) = (𝑂‘{𝑋}))       (𝜑 → (𝑀‘(𝑁‘{𝑋})) = {𝑓𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑓)})
 
Theoremmapdsn3 39664 Value of the map defined by df-mapd 39646 at the span of a singleton. (Contributed by NM, 17-Feb-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑃 = (LSpan‘𝐷)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝐺𝐹)    &   (𝜑 → (𝐿𝐺) = (𝑂‘{𝑋}))       (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝑃‘{𝐺}))
 
Theoremmapd1dim2lem1N 39665* Value of the map defined by df-mapd 39646 at an atom. (Contributed by NM, 10-Feb-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐴 = (LSAtoms‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑄𝐴)       (𝜑 → (𝑀𝑄) = {𝑓𝐹 ∣ ∃𝑣𝑄 (𝑂‘{𝑣}) = (𝐿𝑓)})
 
Theoremmapdrvallem2 39666* Lemma for mapdrval 39668. TODO: very long antecedents are dragged through proof in some places - see if it shortens proof to remove unused conjuncts. (Contributed by NM, 2-Feb-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑇 = (LSubSp‘𝐷)    &   𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑅𝑇)    &   (𝜑𝑅𝐶)    &   𝑄 = 𝑅 (𝑂‘(𝐿))    &   𝑉 = (Base‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &    0 = (0g𝑈)    &   𝑌 = (0g𝐷)       (𝜑 → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑄} ⊆ 𝑅)
 
Theoremmapdrvallem3 39667* Lemma for mapdrval 39668. (Contributed by NM, 2-Feb-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑇 = (LSubSp‘𝐷)    &   𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑅𝑇)    &   (𝜑𝑅𝐶)    &   𝑄 = 𝑅 (𝑂‘(𝐿))    &   𝑉 = (Base‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &    0 = (0g𝑈)    &   𝑌 = (0g𝐷)       (𝜑 → {𝑓𝐶 ∣ (𝑂‘(𝐿𝑓)) ⊆ 𝑄} = 𝑅)
 
Theoremmapdrval 39668* Given a dual subspace 𝑅 (of functionals with closed kernels), reconstruct the subspace 𝑄 that maps to it. (Contributed by NM, 12-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑇 = (LSubSp‘𝐷)    &   𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑅𝑇)    &   (𝜑𝑅𝐶)    &   𝑄 = 𝑅 (𝑂‘(𝐿))       (𝜑 → (𝑀𝑄) = 𝑅)
 
Theoremmapd1o 39669* The map defined by df-mapd 39646 is one-to-one and onto the set of dual subspaces of functionals with closed kernels. This shows 𝑀 satisfies part of the definition of projectivity of [Baer] p. 40. TODO: change theorems leading to this (lcfr 39606, mapdrval 39668, lclkrs 39560, lclkr 39554,...) to use 𝑇 ∩ 𝒫 𝐶? TODO: maybe get rid of $d's for 𝑔 versus 𝐾𝑈𝑊; propagate to mapdrn 39670 and any others. (Contributed by NM, 12-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑇 = (LSubSp‘𝐷)    &   𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝑀:𝑆1-1-onto→(𝑇 ∩ 𝒫 𝐶))
 
Theoremmapdrn 39670* Range of the map defined by df-mapd 39646. (Contributed by NM, 12-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑇 = (LSubSp‘𝐷)    &   𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑 → ran 𝑀 = (𝑇 ∩ 𝒫 𝐶))
 
TheoremmapdunirnN 39671* Union of the range of the map defined by df-mapd 39646. (Contributed by NM, 13-Mar-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑂 = ((ocH‘𝐾)‘𝑊)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐶 = {𝑔𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑔))) = (𝐿𝑔)}    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑 ran 𝑀 = 𝐶)
 
Theoremmapdrn2 39672 Range of the map defined by df-mapd 39646. TODO: this seems to be needed a lot in hdmaprnlem3eN 39879 etc. Would it be better to change df-mapd 39646 theorems to use LSubSp‘𝐶 instead of ran 𝑀? (Contributed by NM, 13-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑇 = (LSubSp‘𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑 → ran 𝑀 = 𝑇)
 
Theoremmapdcnvcl 39673 Closure of the converse of the map defined by df-mapd 39646. (Contributed by NM, 13-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝑀)       (𝜑 → (𝑀𝑋) ∈ 𝑆)
 
Theoremmapdcl 39674 Closure the value of the map defined by df-mapd 39646. (Contributed by NM, 13-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑆)       (𝜑 → (𝑀𝑋) ∈ ran 𝑀)
 
Theoremmapdcnvid1N 39675 Converse of the value of the map defined by df-mapd 39646. (Contributed by NM, 13-Mar-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑆)       (𝜑 → (𝑀‘(𝑀𝑋)) = 𝑋)
 
Theoremmapdsord 39676 Strong ordering property of themap defined by df-mapd 39646. (Contributed by NM, 13-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)       (𝜑 → ((𝑀𝑋) ⊊ (𝑀𝑌) ↔ 𝑋𝑌))
 
Theoremmapdcl2 39677 The mapping of a subspace of vector space H is a subspace in the dual space of functionals with closed kernels. (Contributed by NM, 31-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑇 = (LSubSp‘𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑅𝑆)       (𝜑 → (𝑀𝑅) ∈ 𝑇)
 
Theoremmapdcnvid2 39678 Value of the converse of the map defined by df-mapd 39646. (Contributed by NM, 13-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝑀)       (𝜑 → (𝑀‘(𝑀𝑋)) = 𝑋)
 
TheoremmapdcnvordN 39679 Ordering property of the converse of the map defined by df-mapd 39646. (Contributed by NM, 13-Mar-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝑀)    &   (𝜑𝑌 ∈ ran 𝑀)       (𝜑 → ((𝑀𝑋) ⊆ (𝑀𝑌) ↔ 𝑋𝑌))
 
Theoremmapdcnv11N 39680 The converse of the map defined by df-mapd 39646 is one-to-one. (Contributed by NM, 13-Mar-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝑀)    &   (𝜑𝑌 ∈ ran 𝑀)       (𝜑 → ((𝑀𝑋) = (𝑀𝑌) ↔ 𝑋 = 𝑌))
 
Theoremmapdcv 39681 Covering property of the converse of the map defined by df-mapd 39646. (Contributed by NM, 14-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐶 = ( ⋖L𝑈)    &   𝐷 = ((LCDual‘𝐾)‘𝑊)    &   𝐸 = ( ⋖L𝐷)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)       (𝜑 → (𝑋𝐶𝑌 ↔ (𝑀𝑋)𝐸(𝑀𝑌)))
 
Theoremmapdincl 39682 Closure of dual subspace intersection for the map defined by df-mapd 39646. (Contributed by NM, 12-Apr-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝑀)    &   (𝜑𝑌 ∈ ran 𝑀)       (𝜑 → (𝑋𝑌) ∈ ran 𝑀)
 
Theoremmapdin 39683 Subspace intersection is preserved by the map defined by df-mapd 39646. Part of property (e) in [Baer] p. 40. (Contributed by NM, 12-Apr-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)       (𝜑 → (𝑀‘(𝑋𝑌)) = ((𝑀𝑋) ∩ (𝑀𝑌)))
 
Theoremmapdlsmcl 39684 Closure of dual subspace sum for the map defined by df-mapd 39646. (Contributed by NM, 13-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &    = (LSSum‘𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝑀)    &   (𝜑𝑌 ∈ ran 𝑀)       (𝜑 → (𝑋 𝑌) ∈ ran 𝑀)
 
Theoremmapdlsm 39685 Subspace sum is preserved by the map defined by df-mapd 39646. Part of property (e) in [Baer] p. 40. (Contributed by NM, 13-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &    = (LSSum‘𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &    = (LSSum‘𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)       (𝜑 → (𝑀‘(𝑋 𝑌)) = ((𝑀𝑋) (𝑀𝑌)))
 
Theoremmapd0 39686 Projectivity map of the zero subspace. Part of property (f) in [Baer] p. 40. TODO: does proof need to be this long for this simple fact? (Contributed by NM, 15-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑂 = (0g𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &    0 = (0g𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑 → (𝑀‘{𝑂}) = { 0 })
 
TheoremmapdcnvatN 39687 Atoms are preserved by the map defined by df-mapd 39646. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐴 = (LSAtoms‘𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝐵 = (LSAtoms‘𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑄𝐵)       (𝜑 → (𝑀𝑄) ∈ 𝐴)
 
Theoremmapdat 39688 Atoms are preserved by the map defined by df-mapd 39646. Property (g) in [Baer] p. 41. (Contributed by NM, 14-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐴 = (LSAtoms‘𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝐵 = (LSAtoms‘𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑄𝐴)       (𝜑 → (𝑀𝑄) ∈ 𝐵)
 
Theoremmapdspex 39689* The map of a span equals the dual span of some vector (functional). (Contributed by NM, 15-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝐵 = (Base‘𝐶)    &   𝐽 = (LSpan‘𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)       (𝜑 → ∃𝑔𝐵 (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝑔}))
 
Theoremmapdn0 39690 Transfer nonzero property from domain to range of projectivity mapd. (Contributed by NM, 12-Apr-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝐷 = (Base‘𝐶)    &   𝐽 = (LSpan‘𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐹𝐷)    &   (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))    &    0 = (0g𝑈)    &   𝑍 = (0g𝐶)    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))       (𝜑𝐹 ∈ (𝐷 ∖ {𝑍}))
 
Theoremmapdncol 39691 Transfer non-colinearity from domain to range of projectivity mapd. (Contributed by NM, 11-Apr-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝐷 = (Base‘𝐶)    &   𝐽 = (LSpan‘𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐹𝐷)    &   (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐺𝐷)    &   (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))       (𝜑 → (𝐽‘{𝐹}) ≠ (𝐽‘{𝐺}))
 
Theoremmapdindp 39692 Transfer (part of) vector independence condition from domain to range of projectivity mapd. (Contributed by NM, 11-Apr-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝐷 = (Base‘𝐶)    &   𝐽 = (LSpan‘𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐹𝐷)    &   (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐺𝐷)    &   (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))    &   (𝜑𝑍𝑉)    &   (𝜑𝐸𝐷)    &   (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}))    &   (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))       (𝜑 → ¬ 𝐹 ∈ (𝐽‘{𝐺, 𝐸}))
 
Theoremmapdpglem1 39693 Lemma for mapdpg 39727. Baer p. 44, last line: "(F(x-y))* <= (Fx)*+(Fy)*." (Contributed by NM, 15-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &    = (LSSum‘𝐶)       (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) ⊆ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
 
Theoremmapdpglem2 39694* Lemma for mapdpg 39727. Baer p. 45, lines 1 and 2: "we have (F(x-y))* = Gt where t necessarily belongs to (Fx)*+(Fy)*." (We scope $d 𝑡𝜑 locally to avoid clashes with later substitutions into 𝜑.) (Contributed by NM, 15-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &    = (LSSum‘𝐶)    &   𝐽 = (LSpan‘𝐶)       (𝜑 → ∃𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌})))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
 
Theoremmapdpglem2a 39695* Lemma for mapdpg 39727. (Contributed by NM, 20-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &    = (LSSum‘𝐶)    &   𝐽 = (LSpan‘𝐶)    &   𝐹 = (Base‘𝐶)    &   (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))       (𝜑𝑡𝐹)
 
Theoremmapdpglem3 39696* Lemma for mapdpg 39727. Baer p. 45, line 3: "infer ... the existence of a number g in G and of an element z in (Fy)* such that t = gx'-z." (We scope $d 𝑔𝑤𝑧𝜑 locally to avoid clashes with later substitutions into 𝜑.) (Contributed by NM, 18-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &    = (LSSum‘𝐶)    &   𝐽 = (LSpan‘𝐶)    &   𝐹 = (Base‘𝐶)    &   (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))    &   𝐴 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝐴)    &    · = ( ·𝑠𝐶)    &   𝑅 = (-g𝐶)    &   (𝜑𝐺𝐹)    &   (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))       (𝜑 → ∃𝑔𝐵𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
 
Theoremmapdpglem4N 39697* Lemma for mapdpg 39727. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &    = (LSSum‘𝐶)    &   𝐽 = (LSpan‘𝐶)    &   𝐹 = (Base‘𝐶)    &   (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))    &   𝐴 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝐴)    &    · = ( ·𝑠𝐶)    &   𝑅 = (-g𝐶)    &   (𝜑𝐺𝐹)    &   (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))    &   𝑄 = (0g𝑈)    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))       (𝜑 → (𝑋 𝑌) ≠ 𝑄)
 
Theoremmapdpglem5N 39698* Lemma for mapdpg 39727. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &    = (LSSum‘𝐶)    &   𝐽 = (LSpan‘𝐶)    &   𝐹 = (Base‘𝐶)    &   (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))    &   𝐴 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝐴)    &    · = ( ·𝑠𝐶)    &   𝑅 = (-g𝐶)    &   (𝜑𝐺𝐹)    &   (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))    &   𝑄 = (0g𝑈)    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))       (𝜑𝑡 ≠ (0g𝐶))
 
Theoremmapdpglem6 39699* Lemma for mapdpg 39727. Baer p. 45, line 4: "If g were 0, then t would be in (Fy)*..." (Contributed by NM, 18-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &    = (LSSum‘𝐶)    &   𝐽 = (LSpan‘𝐶)    &   𝐹 = (Base‘𝐶)    &   (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))    &   𝐴 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝐴)    &    · = ( ·𝑠𝐶)    &   𝑅 = (-g𝐶)    &   (𝜑𝐺𝐹)    &   (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))    &   𝑄 = (0g𝑈)    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))    &    0 = (0g𝐴)    &   (𝜑𝑔𝐵)    &   (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))    &   (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))    &   (𝜑𝑋𝑄)    &   (𝜑𝑔 = 0 )       (𝜑𝑡 ∈ (𝑀‘(𝑁‘{𝑌})))
 
Theoremmapdpglem8 39700* Lemma for mapdpg 39727. Baer p. 45, line 4: "...so that (F(x-y))* <= (Fy)*. This would imply that F(x-y) <= F(y)..." (Contributed by NM, 20-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑀 = ((mapd‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    = (-g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &    = (LSSum‘𝐶)    &   𝐽 = (LSpan‘𝐶)    &   𝐹 = (Base‘𝐶)    &   (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))    &   𝐴 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝐴)    &    · = ( ·𝑠𝐶)    &   𝑅 = (-g𝐶)    &   (𝜑𝐺𝐹)    &   (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))    &   𝑄 = (0g𝑈)    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))    &    0 = (0g𝐴)    &   (𝜑𝑔𝐵)    &   (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))    &   (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))    &   (𝜑𝑋𝑄)    &   (𝜑𝑔 = 0 )       (𝜑 → (𝑁‘{(𝑋 𝑌)}) ⊆ (𝑁‘{𝑌}))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >