MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abbi1 Structured version   Visualization version   GIF version

Theorem abbi1 2801
Description: Equivalent formulas yield equal class abstractions (closed form). This is the forward implication of abbi 2805, proved from fewer axioms. (Contributed by BJ and WL and SN, 20-Aug-2023.)
Assertion
Ref Expression
abbi1 (∀𝑥(𝜑𝜓) → {𝑥𝜑} = {𝑥𝜓})

Proof of Theorem abbi1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 spsbbi 2082 . . 3 (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))
2 df-clab 2717 . . 3 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
3 df-clab 2717 . . 3 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
41, 2, 33bitr4g 317 . 2 (∀𝑥(𝜑𝜓) → (𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}))
54eqrdv 2736 1 (∀𝑥(𝜑𝜓) → {𝑥𝜑} = {𝑥𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1540   = wceq 1542  [wsb 2073  wcel 2113  {cab 2716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-9 2123  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1787  df-sb 2074  df-clab 2717  df-cleq 2730
This theorem is referenced by:  abbidv  2802  abbii  2803  abbid  2804  sbcbi2  3741  iuneq12df  4908  iotabi  6312  uniabio  6313  iotanul  6318  iuneq12daf  30470  bj-abv  34720  bj-cleq  34772  iotain  41565
  Copyright terms: Public domain W3C validator