Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abbi1 | Structured version Visualization version GIF version |
Description: Equivalent formulas yield equal class abstractions (closed form). This is the forward implication of abbi 2805, proved from fewer axioms. (Contributed by BJ and WL and SN, 20-Aug-2023.) |
Ref | Expression |
---|---|
abbi1 | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbbi 2082 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) | |
2 | df-clab 2717 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
3 | df-clab 2717 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
4 | 1, 2, 3 | 3bitr4g 317 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
5 | 4 | eqrdv 2736 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1540 = wceq 1542 [wsb 2073 ∈ wcel 2113 {cab 2716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-9 2123 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 |
This theorem is referenced by: abbidv 2802 abbii 2803 abbid 2804 sbcbi2 3741 iuneq12df 4908 iotabi 6312 uniabio 6313 iotanul 6318 iuneq12daf 30470 bj-abv 34720 bj-cleq 34772 iotain 41565 |
Copyright terms: Public domain | W3C validator |