![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abbi1 | Structured version Visualization version GIF version |
Description: Equivalent formulas yield equal class abstractions (closed form). This is the forward implication of abbi 2923, proved from fewer axioms. (Contributed by BJ and WL and SN, 20-Aug-2023.) |
Ref | Expression |
---|---|
abbi1 | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbbi 2050 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) | |
2 | df-clab 2775 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
3 | df-clab 2775 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
4 | 1, 2, 3 | 3bitr4g 315 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
5 | 4 | eqrdv 2792 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∀wal 1520 = wceq 1522 [wsb 2041 ∈ wcel 2080 {cab 2774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-9 2090 ax-ext 2768 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1763 df-sb 2042 df-clab 2775 df-cleq 2787 |
This theorem is referenced by: abbidv 2859 abbii 2860 abbid 2861 iuneq12df 4852 iotabi 6201 uniabio 6202 iotanul 6207 iuneq12daf 29990 bj-cleq 33843 iotain 40300 |
Copyright terms: Public domain | W3C validator |