![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotain | Structured version Visualization version GIF version |
Description: Equivalence between two different forms of ℩. (Contributed by Andrew Salmon, 15-Jul-2011.) |
Ref | Expression |
---|---|
iotain | ⊢ (∃!𝑥𝜑 → ∩ {𝑥 ∣ 𝜑} = (℩𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu6 2617 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
2 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 2 | intsn 4818 | . . . 4 ⊢ ∩ {𝑦} = 𝑦 |
4 | abbi1 2859 | . . . . . 6 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑦}) | |
5 | df-sn 4473 | . . . . . 6 ⊢ {𝑦} = {𝑥 ∣ 𝑥 = 𝑦} | |
6 | 4, 5 | syl6eqr 2849 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑦}) |
7 | 6 | inteqd 4787 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∩ {𝑥 ∣ 𝜑} = ∩ {𝑦}) |
8 | iotaval 6200 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | |
9 | 3, 7, 8 | 3eqtr4a 2857 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∩ {𝑥 ∣ 𝜑} = (℩𝑥𝜑)) |
10 | 9 | exlimiv 1908 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∩ {𝑥 ∣ 𝜑} = (℩𝑥𝜑)) |
11 | 1, 10 | sylbi 218 | 1 ⊢ (∃!𝑥𝜑 → ∩ {𝑥 ∣ 𝜑} = (℩𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∀wal 1520 = wceq 1522 ∃wex 1761 ∃!weu 2611 {cab 2775 {csn 4472 ∩ cint 4782 ℩cio 6187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-un 3864 df-in 3866 df-sn 4473 df-pr 4475 df-uni 4746 df-int 4783 df-iota 6189 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |