Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotain Structured version   Visualization version   GIF version

Theorem iotain 43166
Description: Equivalence between two different forms of . (Contributed by Andrew Salmon, 15-Jul-2011.)
Assertion
Ref Expression
iotain (∃!𝑥𝜑 {𝑥𝜑} = (℩𝑥𝜑))

Proof of Theorem iotain
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eu6 2568 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 vex 3478 . . . . 5 𝑦 ∈ V
32intsn 4990 . . . 4 {𝑦} = 𝑦
4 abbi 2800 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑥𝑥 = 𝑦})
5 df-sn 4629 . . . . . 6 {𝑦} = {𝑥𝑥 = 𝑦}
64, 5eqtr4di 2790 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
76inteqd 4955 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
8 iotaval 6514 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
93, 7, 83eqtr4a 2798 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = (℩𝑥𝜑))
109exlimiv 1933 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = (℩𝑥𝜑))
111, 10sylbi 216 1 (∃!𝑥𝜑 {𝑥𝜑} = (℩𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539   = wceq 1541  wex 1781  ∃!weu 2562  {cab 2709  {csn 4628   cint 4950  cio 6493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-v 3476  df-un 3953  df-in 3955  df-ss 3965  df-sn 4629  df-pr 4631  df-uni 4909  df-int 4951  df-iota 6495
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator