Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotain Structured version   Visualization version   GIF version

Theorem iotain 44413
Description: Equivalence between two different forms of . (Contributed by Andrew Salmon, 15-Jul-2011.)
Assertion
Ref Expression
iotain (∃!𝑥𝜑 {𝑥𝜑} = (℩𝑥𝜑))

Proof of Theorem iotain
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eu6 2572 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 vex 3482 . . . . 5 𝑦 ∈ V
32intsn 4989 . . . 4 {𝑦} = 𝑦
4 abbi 2805 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑥𝑥 = 𝑦})
5 df-sn 4632 . . . . . 6 {𝑦} = {𝑥𝑥 = 𝑦}
64, 5eqtr4di 2793 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
76inteqd 4956 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
8 iotaval 6534 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
93, 7, 83eqtr4a 2801 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = (℩𝑥𝜑))
109exlimiv 1928 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = (℩𝑥𝜑))
111, 10sylbi 217 1 (∃!𝑥𝜑 {𝑥𝜑} = (℩𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wex 1776  ∃!weu 2566  {cab 2712  {csn 4631   cint 4951  cio 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-v 3480  df-un 3968  df-in 3970  df-ss 3980  df-sn 4632  df-pr 4634  df-uni 4913  df-int 4952  df-iota 6516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator