Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotain Structured version   Visualization version   GIF version

Theorem iotain 41924
Description: Equivalence between two different forms of . (Contributed by Andrew Salmon, 15-Jul-2011.)
Assertion
Ref Expression
iotain (∃!𝑥𝜑 {𝑥𝜑} = (℩𝑥𝜑))

Proof of Theorem iotain
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eu6 2574 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 vex 3426 . . . . 5 𝑦 ∈ V
32intsn 4914 . . . 4 {𝑦} = 𝑦
4 abbi1 2807 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑥𝑥 = 𝑦})
5 df-sn 4559 . . . . . 6 {𝑦} = {𝑥𝑥 = 𝑦}
64, 5eqtr4di 2797 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
76inteqd 4881 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
8 iotaval 6392 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
93, 7, 83eqtr4a 2805 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = (℩𝑥𝜑))
109exlimiv 1934 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = (℩𝑥𝜑))
111, 10sylbi 216 1 (∃!𝑥𝜑 {𝑥𝜑} = (℩𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wex 1783  ∃!weu 2568  {cab 2715  {csn 4558   cint 4876  cio 6374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-un 3888  df-in 3890  df-ss 3900  df-sn 4559  df-pr 4561  df-uni 4837  df-int 4877  df-iota 6376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator