Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cleq Structured version   Visualization version   GIF version

Theorem bj-cleq 36309
Description: Substitution property for certain classes. (Contributed by BJ, 2-Apr-2019.)
Assertion
Ref Expression
bj-cleq (𝐴 = 𝐵 → {𝑥 ∣ {𝑥} ∈ (𝐴𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵𝐶)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem bj-cleq
StepHypRef Expression
1 imaeq1 6054 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
2 eleq2 2821 . . 3 ((𝐴𝐶) = (𝐵𝐶) → ({𝑥} ∈ (𝐴𝐶) ↔ {𝑥} ∈ (𝐵𝐶)))
32alrimiv 1929 . 2 ((𝐴𝐶) = (𝐵𝐶) → ∀𝑥({𝑥} ∈ (𝐴𝐶) ↔ {𝑥} ∈ (𝐵𝐶)))
4 abbi 2799 . 2 (∀𝑥({𝑥} ∈ (𝐴𝐶) ↔ {𝑥} ∈ (𝐵𝐶)) → {𝑥 ∣ {𝑥} ∈ (𝐴𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵𝐶)})
51, 3, 43syl 18 1 (𝐴 = 𝐵 → {𝑥 ∣ {𝑥} ∈ (𝐴𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵𝐶)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1538   = wceq 1540  wcel 2105  {cab 2708  {csn 4628  cima 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator