Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cleq Structured version   Visualization version   GIF version

Theorem bj-cleq 36928
Description: Substitution property for certain classes. (Contributed by BJ, 2-Apr-2019.)
Assertion
Ref Expression
bj-cleq (𝐴 = 𝐵 → {𝑥 ∣ {𝑥} ∈ (𝐴𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵𝐶)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem bj-cleq
StepHypRef Expression
1 imaeq1 6084 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
2 eleq2 2833 . . 3 ((𝐴𝐶) = (𝐵𝐶) → ({𝑥} ∈ (𝐴𝐶) ↔ {𝑥} ∈ (𝐵𝐶)))
32alrimiv 1926 . 2 ((𝐴𝐶) = (𝐵𝐶) → ∀𝑥({𝑥} ∈ (𝐴𝐶) ↔ {𝑥} ∈ (𝐵𝐶)))
4 abbi 2810 . 2 (∀𝑥({𝑥} ∈ (𝐴𝐶) ↔ {𝑥} ∈ (𝐵𝐶)) → {𝑥 ∣ {𝑥} ∈ (𝐴𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵𝐶)})
51, 3, 43syl 18 1 (𝐴 = 𝐵 → {𝑥 ∣ {𝑥} ∈ (𝐴𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵𝐶)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wcel 2108  {cab 2717  {csn 4648  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator