![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cleq | Structured version Visualization version GIF version |
Description: Substitution property for certain classes. (Contributed by BJ, 2-Apr-2019.) |
Ref | Expression |
---|---|
bj-cleq | ⊢ (𝐴 = 𝐵 → {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵 “ 𝐶)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1 6045 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | |
2 | eleq2 2814 | . . 3 ⊢ ((𝐴 “ 𝐶) = (𝐵 “ 𝐶) → ({𝑥} ∈ (𝐴 “ 𝐶) ↔ {𝑥} ∈ (𝐵 “ 𝐶))) | |
3 | 2 | alrimiv 1922 | . 2 ⊢ ((𝐴 “ 𝐶) = (𝐵 “ 𝐶) → ∀𝑥({𝑥} ∈ (𝐴 “ 𝐶) ↔ {𝑥} ∈ (𝐵 “ 𝐶))) |
4 | abbi 2792 | . 2 ⊢ (∀𝑥({𝑥} ∈ (𝐴 “ 𝐶) ↔ {𝑥} ∈ (𝐵 “ 𝐶)) → {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵 “ 𝐶)}) | |
5 | 1, 3, 4 | 3syl 18 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵 “ 𝐶)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 = wceq 1533 ∈ wcel 2098 {cab 2701 {csn 4621 “ cima 5670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |