Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cleq | Structured version Visualization version GIF version |
Description: Substitution property for certain classes. (Contributed by BJ, 2-Apr-2019.) |
Ref | Expression |
---|---|
bj-cleq | ⊢ (𝐴 = 𝐵 → {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵 “ 𝐶)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1 5953 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | |
2 | eleq2 2827 | . . 3 ⊢ ((𝐴 “ 𝐶) = (𝐵 “ 𝐶) → ({𝑥} ∈ (𝐴 “ 𝐶) ↔ {𝑥} ∈ (𝐵 “ 𝐶))) | |
3 | 2 | alrimiv 1931 | . 2 ⊢ ((𝐴 “ 𝐶) = (𝐵 “ 𝐶) → ∀𝑥({𝑥} ∈ (𝐴 “ 𝐶) ↔ {𝑥} ∈ (𝐵 “ 𝐶))) |
4 | abbi1 2807 | . 2 ⊢ (∀𝑥({𝑥} ∈ (𝐴 “ 𝐶) ↔ {𝑥} ∈ (𝐵 “ 𝐶)) → {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵 “ 𝐶)}) | |
5 | 1, 3, 4 | 3syl 18 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵 “ 𝐶)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2108 {cab 2715 {csn 4558 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |