![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cleq | Structured version Visualization version GIF version |
Description: Substitution property for certain classes. (Contributed by BJ, 2-Apr-2019.) |
Ref | Expression |
---|---|
bj-cleq | ⊢ (𝐴 = 𝐵 → {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵 “ 𝐶)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1 5715 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | |
2 | eleq2 2848 | . . . 4 ⊢ ((𝐴 “ 𝐶) = (𝐵 “ 𝐶) → ({𝑥} ∈ (𝐴 “ 𝐶) ↔ {𝑥} ∈ (𝐵 “ 𝐶))) | |
3 | 2 | alrimiv 1970 | . . 3 ⊢ ((𝐴 “ 𝐶) = (𝐵 “ 𝐶) → ∀𝑥({𝑥} ∈ (𝐴 “ 𝐶) ↔ {𝑥} ∈ (𝐵 “ 𝐶))) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑥({𝑥} ∈ (𝐴 “ 𝐶) ↔ {𝑥} ∈ (𝐵 “ 𝐶))) |
5 | abbi 2902 | . 2 ⊢ (∀𝑥({𝑥} ∈ (𝐴 “ 𝐶) ↔ {𝑥} ∈ (𝐵 “ 𝐶)) ↔ {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵 “ 𝐶)}) | |
6 | 4, 5 | sylib 210 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵 “ 𝐶)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1599 = wceq 1601 ∈ wcel 2107 {cab 2763 {csn 4398 “ cima 5358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4887 df-opab 4949 df-cnv 5363 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |