| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cleq | Structured version Visualization version GIF version | ||
| Description: Substitution property for certain classes. (Contributed by BJ, 2-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-cleq | ⊢ (𝐴 = 𝐵 → {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵 “ 𝐶)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1 6072 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | |
| 2 | eleq2 2829 | . . 3 ⊢ ((𝐴 “ 𝐶) = (𝐵 “ 𝐶) → ({𝑥} ∈ (𝐴 “ 𝐶) ↔ {𝑥} ∈ (𝐵 “ 𝐶))) | |
| 3 | 2 | alrimiv 1926 | . 2 ⊢ ((𝐴 “ 𝐶) = (𝐵 “ 𝐶) → ∀𝑥({𝑥} ∈ (𝐴 “ 𝐶) ↔ {𝑥} ∈ (𝐵 “ 𝐶))) |
| 4 | abbi 2806 | . 2 ⊢ (∀𝑥({𝑥} ∈ (𝐴 “ 𝐶) ↔ {𝑥} ∈ (𝐵 “ 𝐶)) → {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵 “ 𝐶)}) | |
| 5 | 1, 3, 4 | 3syl 18 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐶)} = {𝑥 ∣ {𝑥} ∈ (𝐵 “ 𝐶)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 = wceq 1539 ∈ wcel 2107 {cab 2713 {csn 4625 “ cima 5687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |