Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb2xN Structured version   Visualization version   GIF version

Theorem pmapglb2xN 39870
Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb2N 39869, where we read 𝑆 as 𝑆(𝑖). Extension of Theorem 15.5.2 of [MaedaMaeda] p. 62 that allows 𝐼 = ∅. (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapglb2.b 𝐵 = (Base‘𝐾)
pmapglb2.g 𝐺 = (glb‘𝐾)
pmapglb2.a 𝐴 = (Atoms‘𝐾)
pmapglb2.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapglb2xN ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆)))
Distinct variable groups:   𝐴,𝑖   𝑦,𝑖,𝐵   𝑖,𝐼,𝑦   𝑖,𝐾,𝑦   𝑦,𝑆
Allowed substitution hints:   𝐴(𝑦)   𝑆(𝑖)   𝐺(𝑦,𝑖)   𝑀(𝑦,𝑖)

Proof of Theorem pmapglb2xN
StepHypRef Expression
1 hlop 39460 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
2 pmapglb2.g . . . . . . . 8 𝐺 = (glb‘𝐾)
3 eqid 2731 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
42, 3glb0N 39291 . . . . . . 7 (𝐾 ∈ OP → (𝐺‘∅) = (1.‘𝐾))
54fveq2d 6826 . . . . . 6 (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = (𝑀‘(1.‘𝐾)))
6 pmapglb2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
7 pmapglb2.m . . . . . . 7 𝑀 = (pmap‘𝐾)
83, 6, 7pmap1N 39865 . . . . . 6 (𝐾 ∈ OP → (𝑀‘(1.‘𝐾)) = 𝐴)
95, 8eqtrd 2766 . . . . 5 (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = 𝐴)
101, 9syl 17 . . . 4 (𝐾 ∈ HL → (𝑀‘(𝐺‘∅)) = 𝐴)
11 rexeq 3288 . . . . . . . . 9 (𝐼 = ∅ → (∃𝑖𝐼 𝑦 = 𝑆 ↔ ∃𝑖 ∈ ∅ 𝑦 = 𝑆))
1211abbidv 2797 . . . . . . . 8 (𝐼 = ∅ → {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} = {𝑦 ∣ ∃𝑖 ∈ ∅ 𝑦 = 𝑆})
13 rex0 4307 . . . . . . . . 9 ¬ ∃𝑖 ∈ ∅ 𝑦 = 𝑆
1413abf 4353 . . . . . . . 8 {𝑦 ∣ ∃𝑖 ∈ ∅ 𝑦 = 𝑆} = ∅
1512, 14eqtrdi 2782 . . . . . . 7 (𝐼 = ∅ → {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} = ∅)
1615fveq2d 6826 . . . . . 6 (𝐼 = ∅ → (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) = (𝐺‘∅))
1716fveq2d 6826 . . . . 5 (𝐼 = ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝑀‘(𝐺‘∅)))
18 riin0 5028 . . . . 5 (𝐼 = ∅ → (𝐴 𝑖𝐼 (𝑀𝑆)) = 𝐴)
1917, 18eqeq12d 2747 . . . 4 (𝐼 = ∅ → ((𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆)) ↔ (𝑀‘(𝐺‘∅)) = 𝐴))
2010, 19syl5ibrcom 247 . . 3 (𝐾 ∈ HL → (𝐼 = ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆))))
2120adantr 480 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐼 = ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆))))
22 pmapglb2.b . . . . 5 𝐵 = (Base‘𝐾)
2322, 2, 7pmapglbx 39867 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = 𝑖𝐼 (𝑀𝑆))
24 nfv 1915 . . . . . . . . . 10 𝑖 𝐾 ∈ HL
25 nfra1 3256 . . . . . . . . . 10 𝑖𝑖𝐼 𝑆𝐵
2624, 25nfan 1900 . . . . . . . . 9 𝑖(𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵)
27 simpr 484 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → 𝑖𝐼)
28 simpll 766 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → 𝐾 ∈ HL)
29 rspa 3221 . . . . . . . . . . . . 13 ((∀𝑖𝐼 𝑆𝐵𝑖𝐼) → 𝑆𝐵)
3029adantll 714 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → 𝑆𝐵)
3122, 6, 7pmapssat 39857 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑀𝑆) ⊆ 𝐴)
3228, 30, 31syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → (𝑀𝑆) ⊆ 𝐴)
3327, 32jca 511 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → (𝑖𝐼 ∧ (𝑀𝑆) ⊆ 𝐴))
3433ex 412 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝑖𝐼 → (𝑖𝐼 ∧ (𝑀𝑆) ⊆ 𝐴)))
3526, 34eximd 2219 . . . . . . . 8 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (∃𝑖 𝑖𝐼 → ∃𝑖(𝑖𝐼 ∧ (𝑀𝑆) ⊆ 𝐴)))
36 n0 4300 . . . . . . . 8 (𝐼 ≠ ∅ ↔ ∃𝑖 𝑖𝐼)
37 df-rex 3057 . . . . . . . 8 (∃𝑖𝐼 (𝑀𝑆) ⊆ 𝐴 ↔ ∃𝑖(𝑖𝐼 ∧ (𝑀𝑆) ⊆ 𝐴))
3835, 36, 373imtr4g 296 . . . . . . 7 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐼 ≠ ∅ → ∃𝑖𝐼 (𝑀𝑆) ⊆ 𝐴))
39383impia 1117 . . . . . 6 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → ∃𝑖𝐼 (𝑀𝑆) ⊆ 𝐴)
40 iinss 5003 . . . . . 6 (∃𝑖𝐼 (𝑀𝑆) ⊆ 𝐴 𝑖𝐼 (𝑀𝑆) ⊆ 𝐴)
4139, 40syl 17 . . . . 5 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → 𝑖𝐼 (𝑀𝑆) ⊆ 𝐴)
42 sseqin2 4170 . . . . 5 ( 𝑖𝐼 (𝑀𝑆) ⊆ 𝐴 ↔ (𝐴 𝑖𝐼 (𝑀𝑆)) = 𝑖𝐼 (𝑀𝑆))
4341, 42sylib 218 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝐴 𝑖𝐼 (𝑀𝑆)) = 𝑖𝐼 (𝑀𝑆))
4423, 43eqtr4d 2769 . . 3 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆)))
45443expia 1121 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐼 ≠ ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆))))
4621, 45pm2.61dne 3014 1 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  cin 3896  wss 3897  c0 4280   ciin 4940  cfv 6481  Basecbs 17120  glbcglb 18216  1.cp1 18328  OPcops 39270  Atomscatm 39361  HLchlt 39448  pmapcpmap 39595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39274  df-ol 39276  df-oml 39277  df-ats 39365  df-hlat 39449  df-pmap 39602
This theorem is referenced by:  polval2N  40004
  Copyright terms: Public domain W3C validator