Proof of Theorem pmapglb2xN
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | hlop 39363 | . . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | 
| 2 |  | pmapglb2.g | . . . . . . . 8
⊢ 𝐺 = (glb‘𝐾) | 
| 3 |  | eqid 2737 | . . . . . . . 8
⊢
(1.‘𝐾) =
(1.‘𝐾) | 
| 4 | 2, 3 | glb0N 39194 | . . . . . . 7
⊢ (𝐾 ∈ OP → (𝐺‘∅) =
(1.‘𝐾)) | 
| 5 | 4 | fveq2d 6910 | . . . . . 6
⊢ (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = (𝑀‘(1.‘𝐾))) | 
| 6 |  | pmapglb2.a | . . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) | 
| 7 |  | pmapglb2.m | . . . . . . 7
⊢ 𝑀 = (pmap‘𝐾) | 
| 8 | 3, 6, 7 | pmap1N 39769 | . . . . . 6
⊢ (𝐾 ∈ OP → (𝑀‘(1.‘𝐾)) = 𝐴) | 
| 9 | 5, 8 | eqtrd 2777 | . . . . 5
⊢ (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = 𝐴) | 
| 10 | 1, 9 | syl 17 | . . . 4
⊢ (𝐾 ∈ HL → (𝑀‘(𝐺‘∅)) = 𝐴) | 
| 11 |  | rexeq 3322 | . . . . . . . . 9
⊢ (𝐼 = ∅ → (∃𝑖 ∈ 𝐼 𝑦 = 𝑆 ↔ ∃𝑖 ∈ ∅ 𝑦 = 𝑆)) | 
| 12 | 11 | abbidv 2808 | . . . . . . . 8
⊢ (𝐼 = ∅ → {𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆} = {𝑦 ∣ ∃𝑖 ∈ ∅ 𝑦 = 𝑆}) | 
| 13 |  | rex0 4360 | . . . . . . . . 9
⊢  ¬
∃𝑖 ∈ ∅
𝑦 = 𝑆 | 
| 14 | 13 | abf 4406 | . . . . . . . 8
⊢ {𝑦 ∣ ∃𝑖 ∈ ∅ 𝑦 = 𝑆} = ∅ | 
| 15 | 12, 14 | eqtrdi 2793 | . . . . . . 7
⊢ (𝐼 = ∅ → {𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆} = ∅) | 
| 16 | 15 | fveq2d 6910 | . . . . . 6
⊢ (𝐼 = ∅ → (𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆}) = (𝐺‘∅)) | 
| 17 | 16 | fveq2d 6910 | . . . . 5
⊢ (𝐼 = ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆})) = (𝑀‘(𝐺‘∅))) | 
| 18 |  | riin0 5082 | . . . . 5
⊢ (𝐼 = ∅ → (𝐴 ∩ ∩ 𝑖 ∈ 𝐼 (𝑀‘𝑆)) = 𝐴) | 
| 19 | 17, 18 | eqeq12d 2753 | . . . 4
⊢ (𝐼 = ∅ → ((𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆})) = (𝐴 ∩ ∩
𝑖 ∈ 𝐼 (𝑀‘𝑆)) ↔ (𝑀‘(𝐺‘∅)) = 𝐴)) | 
| 20 | 10, 19 | syl5ibrcom 247 | . . 3
⊢ (𝐾 ∈ HL → (𝐼 = ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆})) = (𝐴 ∩ ∩
𝑖 ∈ 𝐼 (𝑀‘𝑆)))) | 
| 21 | 20 | adantr 480 | . 2
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → (𝐼 = ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆})) = (𝐴 ∩ ∩
𝑖 ∈ 𝐼 (𝑀‘𝑆)))) | 
| 22 |  | pmapglb2.b | . . . . 5
⊢ 𝐵 = (Base‘𝐾) | 
| 23 | 22, 2, 7 | pmapglbx 39771 | . . . 4
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆})) = ∩
𝑖 ∈ 𝐼 (𝑀‘𝑆)) | 
| 24 |  | nfv 1914 | . . . . . . . . . 10
⊢
Ⅎ𝑖 𝐾 ∈ HL | 
| 25 |  | nfra1 3284 | . . . . . . . . . 10
⊢
Ⅎ𝑖∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 | 
| 26 | 24, 25 | nfan 1899 | . . . . . . . . 9
⊢
Ⅎ𝑖(𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) | 
| 27 |  | simpr 484 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) | 
| 28 |  | simpll 767 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) → 𝐾 ∈ HL) | 
| 29 |  | rspa 3248 | . . . . . . . . . . . . 13
⊢
((∀𝑖 ∈
𝐼 𝑆 ∈ 𝐵 ∧ 𝑖 ∈ 𝐼) → 𝑆 ∈ 𝐵) | 
| 30 | 29 | adantll 714 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) → 𝑆 ∈ 𝐵) | 
| 31 | 22, 6, 7 | pmapssat 39761 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐵) → (𝑀‘𝑆) ⊆ 𝐴) | 
| 32 | 28, 30, 31 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) → (𝑀‘𝑆) ⊆ 𝐴) | 
| 33 | 27, 32 | jca 511 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) → (𝑖 ∈ 𝐼 ∧ (𝑀‘𝑆) ⊆ 𝐴)) | 
| 34 | 33 | ex 412 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → (𝑖 ∈ 𝐼 → (𝑖 ∈ 𝐼 ∧ (𝑀‘𝑆) ⊆ 𝐴))) | 
| 35 | 26, 34 | eximd 2216 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → (∃𝑖 𝑖 ∈ 𝐼 → ∃𝑖(𝑖 ∈ 𝐼 ∧ (𝑀‘𝑆) ⊆ 𝐴))) | 
| 36 |  | n0 4353 | . . . . . . . 8
⊢ (𝐼 ≠ ∅ ↔
∃𝑖 𝑖 ∈ 𝐼) | 
| 37 |  | df-rex 3071 | . . . . . . . 8
⊢
(∃𝑖 ∈
𝐼 (𝑀‘𝑆) ⊆ 𝐴 ↔ ∃𝑖(𝑖 ∈ 𝐼 ∧ (𝑀‘𝑆) ⊆ 𝐴)) | 
| 38 | 35, 36, 37 | 3imtr4g 296 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → (𝐼 ≠ ∅ → ∃𝑖 ∈ 𝐼 (𝑀‘𝑆) ⊆ 𝐴)) | 
| 39 | 38 | 3impia 1118 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅) → ∃𝑖 ∈ 𝐼 (𝑀‘𝑆) ⊆ 𝐴) | 
| 40 |  | iinss 5056 | . . . . . 6
⊢
(∃𝑖 ∈
𝐼 (𝑀‘𝑆) ⊆ 𝐴 → ∩
𝑖 ∈ 𝐼 (𝑀‘𝑆) ⊆ 𝐴) | 
| 41 | 39, 40 | syl 17 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅) → ∩ 𝑖 ∈ 𝐼 (𝑀‘𝑆) ⊆ 𝐴) | 
| 42 |  | sseqin2 4223 | . . . . 5
⊢ (∩ 𝑖 ∈ 𝐼 (𝑀‘𝑆) ⊆ 𝐴 ↔ (𝐴 ∩ ∩
𝑖 ∈ 𝐼 (𝑀‘𝑆)) = ∩
𝑖 ∈ 𝐼 (𝑀‘𝑆)) | 
| 43 | 41, 42 | sylib 218 | . . . 4
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅) → (𝐴 ∩ ∩
𝑖 ∈ 𝐼 (𝑀‘𝑆)) = ∩
𝑖 ∈ 𝐼 (𝑀‘𝑆)) | 
| 44 | 23, 43 | eqtr4d 2780 | . . 3
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆})) = (𝐴 ∩ ∩
𝑖 ∈ 𝐼 (𝑀‘𝑆))) | 
| 45 | 44 | 3expia 1122 | . 2
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → (𝐼 ≠ ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆})) = (𝐴 ∩ ∩
𝑖 ∈ 𝐼 (𝑀‘𝑆)))) | 
| 46 | 21, 45 | pm2.61dne 3028 | 1
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆})) = (𝐴 ∩ ∩
𝑖 ∈ 𝐼 (𝑀‘𝑆))) |