Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb2xN Structured version   Visualization version   GIF version

Theorem pmapglb2xN 39773
Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb2N 39772, where we read 𝑆 as 𝑆(𝑖). Extension of Theorem 15.5.2 of [MaedaMaeda] p. 62 that allows 𝐼 = ∅. (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapglb2.b 𝐵 = (Base‘𝐾)
pmapglb2.g 𝐺 = (glb‘𝐾)
pmapglb2.a 𝐴 = (Atoms‘𝐾)
pmapglb2.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapglb2xN ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆)))
Distinct variable groups:   𝐴,𝑖   𝑦,𝑖,𝐵   𝑖,𝐼,𝑦   𝑖,𝐾,𝑦   𝑦,𝑆
Allowed substitution hints:   𝐴(𝑦)   𝑆(𝑖)   𝐺(𝑦,𝑖)   𝑀(𝑦,𝑖)

Proof of Theorem pmapglb2xN
StepHypRef Expression
1 hlop 39362 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
2 pmapglb2.g . . . . . . . 8 𝐺 = (glb‘𝐾)
3 eqid 2730 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
42, 3glb0N 39193 . . . . . . 7 (𝐾 ∈ OP → (𝐺‘∅) = (1.‘𝐾))
54fveq2d 6865 . . . . . 6 (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = (𝑀‘(1.‘𝐾)))
6 pmapglb2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
7 pmapglb2.m . . . . . . 7 𝑀 = (pmap‘𝐾)
83, 6, 7pmap1N 39768 . . . . . 6 (𝐾 ∈ OP → (𝑀‘(1.‘𝐾)) = 𝐴)
95, 8eqtrd 2765 . . . . 5 (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = 𝐴)
101, 9syl 17 . . . 4 (𝐾 ∈ HL → (𝑀‘(𝐺‘∅)) = 𝐴)
11 rexeq 3297 . . . . . . . . 9 (𝐼 = ∅ → (∃𝑖𝐼 𝑦 = 𝑆 ↔ ∃𝑖 ∈ ∅ 𝑦 = 𝑆))
1211abbidv 2796 . . . . . . . 8 (𝐼 = ∅ → {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} = {𝑦 ∣ ∃𝑖 ∈ ∅ 𝑦 = 𝑆})
13 rex0 4326 . . . . . . . . 9 ¬ ∃𝑖 ∈ ∅ 𝑦 = 𝑆
1413abf 4372 . . . . . . . 8 {𝑦 ∣ ∃𝑖 ∈ ∅ 𝑦 = 𝑆} = ∅
1512, 14eqtrdi 2781 . . . . . . 7 (𝐼 = ∅ → {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} = ∅)
1615fveq2d 6865 . . . . . 6 (𝐼 = ∅ → (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) = (𝐺‘∅))
1716fveq2d 6865 . . . . 5 (𝐼 = ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝑀‘(𝐺‘∅)))
18 riin0 5049 . . . . 5 (𝐼 = ∅ → (𝐴 𝑖𝐼 (𝑀𝑆)) = 𝐴)
1917, 18eqeq12d 2746 . . . 4 (𝐼 = ∅ → ((𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆)) ↔ (𝑀‘(𝐺‘∅)) = 𝐴))
2010, 19syl5ibrcom 247 . . 3 (𝐾 ∈ HL → (𝐼 = ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆))))
2120adantr 480 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐼 = ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆))))
22 pmapglb2.b . . . . 5 𝐵 = (Base‘𝐾)
2322, 2, 7pmapglbx 39770 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = 𝑖𝐼 (𝑀𝑆))
24 nfv 1914 . . . . . . . . . 10 𝑖 𝐾 ∈ HL
25 nfra1 3262 . . . . . . . . . 10 𝑖𝑖𝐼 𝑆𝐵
2624, 25nfan 1899 . . . . . . . . 9 𝑖(𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵)
27 simpr 484 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → 𝑖𝐼)
28 simpll 766 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → 𝐾 ∈ HL)
29 rspa 3227 . . . . . . . . . . . . 13 ((∀𝑖𝐼 𝑆𝐵𝑖𝐼) → 𝑆𝐵)
3029adantll 714 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → 𝑆𝐵)
3122, 6, 7pmapssat 39760 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑀𝑆) ⊆ 𝐴)
3228, 30, 31syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → (𝑀𝑆) ⊆ 𝐴)
3327, 32jca 511 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → (𝑖𝐼 ∧ (𝑀𝑆) ⊆ 𝐴))
3433ex 412 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝑖𝐼 → (𝑖𝐼 ∧ (𝑀𝑆) ⊆ 𝐴)))
3526, 34eximd 2217 . . . . . . . 8 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (∃𝑖 𝑖𝐼 → ∃𝑖(𝑖𝐼 ∧ (𝑀𝑆) ⊆ 𝐴)))
36 n0 4319 . . . . . . . 8 (𝐼 ≠ ∅ ↔ ∃𝑖 𝑖𝐼)
37 df-rex 3055 . . . . . . . 8 (∃𝑖𝐼 (𝑀𝑆) ⊆ 𝐴 ↔ ∃𝑖(𝑖𝐼 ∧ (𝑀𝑆) ⊆ 𝐴))
3835, 36, 373imtr4g 296 . . . . . . 7 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐼 ≠ ∅ → ∃𝑖𝐼 (𝑀𝑆) ⊆ 𝐴))
39383impia 1117 . . . . . 6 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → ∃𝑖𝐼 (𝑀𝑆) ⊆ 𝐴)
40 iinss 5023 . . . . . 6 (∃𝑖𝐼 (𝑀𝑆) ⊆ 𝐴 𝑖𝐼 (𝑀𝑆) ⊆ 𝐴)
4139, 40syl 17 . . . . 5 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → 𝑖𝐼 (𝑀𝑆) ⊆ 𝐴)
42 sseqin2 4189 . . . . 5 ( 𝑖𝐼 (𝑀𝑆) ⊆ 𝐴 ↔ (𝐴 𝑖𝐼 (𝑀𝑆)) = 𝑖𝐼 (𝑀𝑆))
4341, 42sylib 218 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝐴 𝑖𝐼 (𝑀𝑆)) = 𝑖𝐼 (𝑀𝑆))
4423, 43eqtr4d 2768 . . 3 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆)))
45443expia 1121 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐼 ≠ ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆))))
4621, 45pm2.61dne 3012 1 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  cin 3916  wss 3917  c0 4299   ciin 4959  cfv 6514  Basecbs 17186  glbcglb 18278  1.cp1 18390  OPcops 39172  Atomscatm 39263  HLchlt 39350  pmapcpmap 39498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-ats 39267  df-hlat 39351  df-pmap 39505
This theorem is referenced by:  polval2N  39907
  Copyright terms: Public domain W3C validator