Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb2xN Structured version   Visualization version   GIF version

Theorem pmapglb2xN 39729
Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb2N 39728, where we read 𝑆 as 𝑆(𝑖). Extension of Theorem 15.5.2 of [MaedaMaeda] p. 62 that allows 𝐼 = ∅. (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapglb2.b 𝐵 = (Base‘𝐾)
pmapglb2.g 𝐺 = (glb‘𝐾)
pmapglb2.a 𝐴 = (Atoms‘𝐾)
pmapglb2.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapglb2xN ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆)))
Distinct variable groups:   𝐴,𝑖   𝑦,𝑖,𝐵   𝑖,𝐼,𝑦   𝑖,𝐾,𝑦   𝑦,𝑆
Allowed substitution hints:   𝐴(𝑦)   𝑆(𝑖)   𝐺(𝑦,𝑖)   𝑀(𝑦,𝑖)

Proof of Theorem pmapglb2xN
StepHypRef Expression
1 hlop 39318 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
2 pmapglb2.g . . . . . . . 8 𝐺 = (glb‘𝐾)
3 eqid 2740 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
42, 3glb0N 39149 . . . . . . 7 (𝐾 ∈ OP → (𝐺‘∅) = (1.‘𝐾))
54fveq2d 6924 . . . . . 6 (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = (𝑀‘(1.‘𝐾)))
6 pmapglb2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
7 pmapglb2.m . . . . . . 7 𝑀 = (pmap‘𝐾)
83, 6, 7pmap1N 39724 . . . . . 6 (𝐾 ∈ OP → (𝑀‘(1.‘𝐾)) = 𝐴)
95, 8eqtrd 2780 . . . . 5 (𝐾 ∈ OP → (𝑀‘(𝐺‘∅)) = 𝐴)
101, 9syl 17 . . . 4 (𝐾 ∈ HL → (𝑀‘(𝐺‘∅)) = 𝐴)
11 rexeq 3330 . . . . . . . . 9 (𝐼 = ∅ → (∃𝑖𝐼 𝑦 = 𝑆 ↔ ∃𝑖 ∈ ∅ 𝑦 = 𝑆))
1211abbidv 2811 . . . . . . . 8 (𝐼 = ∅ → {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} = {𝑦 ∣ ∃𝑖 ∈ ∅ 𝑦 = 𝑆})
13 rex0 4383 . . . . . . . . 9 ¬ ∃𝑖 ∈ ∅ 𝑦 = 𝑆
1413abf 4429 . . . . . . . 8 {𝑦 ∣ ∃𝑖 ∈ ∅ 𝑦 = 𝑆} = ∅
1512, 14eqtrdi 2796 . . . . . . 7 (𝐼 = ∅ → {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} = ∅)
1615fveq2d 6924 . . . . . 6 (𝐼 = ∅ → (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) = (𝐺‘∅))
1716fveq2d 6924 . . . . 5 (𝐼 = ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝑀‘(𝐺‘∅)))
18 riin0 5105 . . . . 5 (𝐼 = ∅ → (𝐴 𝑖𝐼 (𝑀𝑆)) = 𝐴)
1917, 18eqeq12d 2756 . . . 4 (𝐼 = ∅ → ((𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆)) ↔ (𝑀‘(𝐺‘∅)) = 𝐴))
2010, 19syl5ibrcom 247 . . 3 (𝐾 ∈ HL → (𝐼 = ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆))))
2120adantr 480 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐼 = ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆))))
22 pmapglb2.b . . . . 5 𝐵 = (Base‘𝐾)
2322, 2, 7pmapglbx 39726 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = 𝑖𝐼 (𝑀𝑆))
24 nfv 1913 . . . . . . . . . 10 𝑖 𝐾 ∈ HL
25 nfra1 3290 . . . . . . . . . 10 𝑖𝑖𝐼 𝑆𝐵
2624, 25nfan 1898 . . . . . . . . 9 𝑖(𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵)
27 simpr 484 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → 𝑖𝐼)
28 simpll 766 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → 𝐾 ∈ HL)
29 rspa 3254 . . . . . . . . . . . . 13 ((∀𝑖𝐼 𝑆𝐵𝑖𝐼) → 𝑆𝐵)
3029adantll 713 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → 𝑆𝐵)
3122, 6, 7pmapssat 39716 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑀𝑆) ⊆ 𝐴)
3228, 30, 31syl2anc 583 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → (𝑀𝑆) ⊆ 𝐴)
3327, 32jca 511 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → (𝑖𝐼 ∧ (𝑀𝑆) ⊆ 𝐴))
3433ex 412 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝑖𝐼 → (𝑖𝐼 ∧ (𝑀𝑆) ⊆ 𝐴)))
3526, 34eximd 2217 . . . . . . . 8 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (∃𝑖 𝑖𝐼 → ∃𝑖(𝑖𝐼 ∧ (𝑀𝑆) ⊆ 𝐴)))
36 n0 4376 . . . . . . . 8 (𝐼 ≠ ∅ ↔ ∃𝑖 𝑖𝐼)
37 df-rex 3077 . . . . . . . 8 (∃𝑖𝐼 (𝑀𝑆) ⊆ 𝐴 ↔ ∃𝑖(𝑖𝐼 ∧ (𝑀𝑆) ⊆ 𝐴))
3835, 36, 373imtr4g 296 . . . . . . 7 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐼 ≠ ∅ → ∃𝑖𝐼 (𝑀𝑆) ⊆ 𝐴))
39383impia 1117 . . . . . 6 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → ∃𝑖𝐼 (𝑀𝑆) ⊆ 𝐴)
40 iinss 5079 . . . . . 6 (∃𝑖𝐼 (𝑀𝑆) ⊆ 𝐴 𝑖𝐼 (𝑀𝑆) ⊆ 𝐴)
4139, 40syl 17 . . . . 5 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → 𝑖𝐼 (𝑀𝑆) ⊆ 𝐴)
42 sseqin2 4244 . . . . 5 ( 𝑖𝐼 (𝑀𝑆) ⊆ 𝐴 ↔ (𝐴 𝑖𝐼 (𝑀𝑆)) = 𝑖𝐼 (𝑀𝑆))
4341, 42sylib 218 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝐴 𝑖𝐼 (𝑀𝑆)) = 𝑖𝐼 (𝑀𝑆))
4423, 43eqtr4d 2783 . . 3 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆)))
45443expia 1121 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐼 ≠ ∅ → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆))))
4621, 45pm2.61dne 3034 1 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = (𝐴 𝑖𝐼 (𝑀𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  cin 3975  wss 3976  c0 4352   ciin 5016  cfv 6573  Basecbs 17258  glbcglb 18380  1.cp1 18494  OPcops 39128  Atomscatm 39219  HLchlt 39306  pmapcpmap 39454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-ats 39223  df-hlat 39307  df-pmap 39461
This theorem is referenced by:  polval2N  39863
  Copyright terms: Public domain W3C validator