MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muls01 Structured version   Visualization version   GIF version

Theorem muls01 27808
Description: Surreal multiplication by zero. (Contributed by Scott Fenton, 4-Feb-2025.)
Assertion
Ref Expression
muls01 (𝐴 No → (𝐴 ·s 0s ) = 0s )

Proof of Theorem muls01
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑝 𝑞 𝑟 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0sno 27565 . . 3 0s No
2 mulsval 27805 . . 3 ((𝐴 No ∧ 0s No ) → (𝐴 ·s 0s ) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
31, 2mpan2 688 . 2 (𝐴 No → (𝐴 ·s 0s ) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
4 rex0 4357 . . . . . . . . . 10 ¬ ∃𝑞 ∈ ∅ 𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))
5 left0s 27625 . . . . . . . . . . 11 ( L ‘ 0s ) = ∅
65rexeqi 3323 . . . . . . . . . 10 (∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ ∃𝑞 ∈ ∅ 𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))
74, 6mtbir 323 . . . . . . . . 9 ¬ ∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))
87a1i 11 . . . . . . . 8 (𝑝 ∈ ( L ‘𝐴) → ¬ ∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))
98nrex 3073 . . . . . . 7 ¬ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))
109abf 4402 . . . . . 6 {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = ∅
11 rex0 4357 . . . . . . . . . 10 ¬ ∃𝑠 ∈ ∅ 𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))
12 right0s 27626 . . . . . . . . . . 11 ( R ‘ 0s ) = ∅
1312rexeqi 3323 . . . . . . . . . 10 (∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ↔ ∃𝑠 ∈ ∅ 𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))
1411, 13mtbir 323 . . . . . . . . 9 ¬ ∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))
1514a1i 11 . . . . . . . 8 (𝑟 ∈ ( R ‘𝐴) → ¬ ∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))
1615nrex 3073 . . . . . . 7 ¬ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))
1716abf 4402 . . . . . 6 {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} = ∅
1810, 17uneq12i 4161 . . . . 5 ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) = (∅ ∪ ∅)
19 un0 4390 . . . . 5 (∅ ∪ ∅) = ∅
2018, 19eqtri 2759 . . . 4 ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) = ∅
21 rex0 4357 . . . . . . . . . 10 ¬ ∃𝑢 ∈ ∅ 𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))
2212rexeqi 3323 . . . . . . . . . 10 (∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ↔ ∃𝑢 ∈ ∅ 𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
2321, 22mtbir 323 . . . . . . . . 9 ¬ ∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))
2423a1i 11 . . . . . . . 8 (𝑡 ∈ ( L ‘𝐴) → ¬ ∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
2524nrex 3073 . . . . . . 7 ¬ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))
2625abf 4402 . . . . . 6 {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} = ∅
27 rex0 4357 . . . . . . . . . 10 ¬ ∃𝑤 ∈ ∅ 𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))
285rexeqi 3323 . . . . . . . . . 10 (∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ↔ ∃𝑤 ∈ ∅ 𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
2927, 28mtbir 323 . . . . . . . . 9 ¬ ∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))
3029a1i 11 . . . . . . . 8 (𝑣 ∈ ( R ‘𝐴) → ¬ ∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
3130nrex 3073 . . . . . . 7 ¬ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))
3231abf 4402 . . . . . 6 {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} = ∅
3326, 32uneq12i 4161 . . . . 5 ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) = (∅ ∪ ∅)
3433, 19eqtri 2759 . . . 4 ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) = ∅
3520, 34oveq12i 7424 . . 3 (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) = (∅ |s ∅)
36 df-0s 27563 . . 3 0s = (∅ |s ∅)
3735, 36eqtr4i 2762 . 2 (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) = 0s
383, 37eqtrdi 2787 1 (𝐴 No → (𝐴 ·s 0s ) = 0s )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2105  {cab 2708  wrex 3069  cun 3946  c0 4322  cfv 6543  (class class class)co 7412   No csur 27380   |s cscut 27521   0s c0s 27561   L cleft 27578   R cright 27579   +s cadds 27682   -s csubs 27735   ·s cmuls 27802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-1o 8470  df-2o 8471  df-no 27383  df-slt 27384  df-bday 27385  df-sslt 27520  df-scut 27522  df-0s 27563  df-made 27580  df-old 27581  df-left 27583  df-right 27584  df-norec2 27672  df-muls 27803
This theorem is referenced by:  mulsrid  27809  muls02  27837  mulsgt0  27840  precsexlem9  27901  precsexlem11  27903
  Copyright terms: Public domain W3C validator