MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muls01 Structured version   Visualization version   GIF version

Theorem muls01 28153
Description: Surreal multiplication by zero. (Contributed by Scott Fenton, 4-Feb-2025.)
Assertion
Ref Expression
muls01 (𝐴 No → (𝐴 ·s 0s ) = 0s )

Proof of Theorem muls01
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑝 𝑞 𝑟 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0sno 27886 . . 3 0s No
2 mulsval 28150 . . 3 ((𝐴 No ∧ 0s No ) → (𝐴 ·s 0s ) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
31, 2mpan2 691 . 2 (𝐴 No → (𝐴 ·s 0s ) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
4 rex0 4366 . . . . . . . . . 10 ¬ ∃𝑞 ∈ ∅ 𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))
5 left0s 27946 . . . . . . . . . . 11 ( L ‘ 0s ) = ∅
65rexeqi 3323 . . . . . . . . . 10 (∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ ∃𝑞 ∈ ∅ 𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))
74, 6mtbir 323 . . . . . . . . 9 ¬ ∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))
87a1i 11 . . . . . . . 8 (𝑝 ∈ ( L ‘𝐴) → ¬ ∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))
98nrex 3072 . . . . . . 7 ¬ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))
109abf 4412 . . . . . 6 {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = ∅
11 rex0 4366 . . . . . . . . . 10 ¬ ∃𝑠 ∈ ∅ 𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))
12 right0s 27947 . . . . . . . . . . 11 ( R ‘ 0s ) = ∅
1312rexeqi 3323 . . . . . . . . . 10 (∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ↔ ∃𝑠 ∈ ∅ 𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))
1411, 13mtbir 323 . . . . . . . . 9 ¬ ∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))
1514a1i 11 . . . . . . . 8 (𝑟 ∈ ( R ‘𝐴) → ¬ ∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))
1615nrex 3072 . . . . . . 7 ¬ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))
1716abf 4412 . . . . . 6 {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} = ∅
1810, 17uneq12i 4176 . . . . 5 ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) = (∅ ∪ ∅)
19 un0 4400 . . . . 5 (∅ ∪ ∅) = ∅
2018, 19eqtri 2763 . . . 4 ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) = ∅
21 rex0 4366 . . . . . . . . . 10 ¬ ∃𝑢 ∈ ∅ 𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))
2212rexeqi 3323 . . . . . . . . . 10 (∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ↔ ∃𝑢 ∈ ∅ 𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
2321, 22mtbir 323 . . . . . . . . 9 ¬ ∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))
2423a1i 11 . . . . . . . 8 (𝑡 ∈ ( L ‘𝐴) → ¬ ∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
2524nrex 3072 . . . . . . 7 ¬ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))
2625abf 4412 . . . . . 6 {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} = ∅
27 rex0 4366 . . . . . . . . . 10 ¬ ∃𝑤 ∈ ∅ 𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))
285rexeqi 3323 . . . . . . . . . 10 (∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ↔ ∃𝑤 ∈ ∅ 𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
2927, 28mtbir 323 . . . . . . . . 9 ¬ ∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))
3029a1i 11 . . . . . . . 8 (𝑣 ∈ ( R ‘𝐴) → ¬ ∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
3130nrex 3072 . . . . . . 7 ¬ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))
3231abf 4412 . . . . . 6 {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} = ∅
3326, 32uneq12i 4176 . . . . 5 ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) = (∅ ∪ ∅)
3433, 19eqtri 2763 . . . 4 ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) = ∅
3520, 34oveq12i 7443 . . 3 (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) = (∅ |s ∅)
36 df-0s 27884 . . 3 0s = (∅ |s ∅)
3735, 36eqtr4i 2766 . 2 (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) = 0s
383, 37eqtrdi 2791 1 (𝐴 No → (𝐴 ·s 0s ) = 0s )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2106  {cab 2712  wrex 3068  cun 3961  c0 4339  cfv 6563  (class class class)co 7431   No csur 27699   |s cscut 27842   0s c0s 27882   L cleft 27899   R cright 27900   +s cadds 28007   -s csubs 28067   ·s cmuls 28147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-bday 27704  df-sslt 27841  df-scut 27843  df-0s 27884  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec2 27997  df-muls 28148
This theorem is referenced by:  mulsrid  28154  muls02  28182  mulsgt0  28185  mulsge0d  28187  slemul1ad  28223  muls0ord  28226  precsexlem9  28254  precsexlem11  28256  n0mulscl  28363  n0seo  28420  cutpw2  28432
  Copyright terms: Public domain W3C validator