MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muls01 Structured version   Visualization version   GIF version

Theorem muls01 28022
Description: Surreal multiplication by zero. (Contributed by Scott Fenton, 4-Feb-2025.)
Assertion
Ref Expression
muls01 (𝐴 No → (𝐴 ·s 0s ) = 0s )

Proof of Theorem muls01
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑝 𝑞 𝑟 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0sno 27745 . . 3 0s No
2 mulsval 28019 . . 3 ((𝐴 No ∧ 0s No ) → (𝐴 ·s 0s ) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
31, 2mpan2 691 . 2 (𝐴 No → (𝐴 ·s 0s ) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
4 rex0 4326 . . . . . . . . . 10 ¬ ∃𝑞 ∈ ∅ 𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))
5 left0s 27811 . . . . . . . . . . 11 ( L ‘ 0s ) = ∅
65rexeqi 3300 . . . . . . . . . 10 (∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ ∃𝑞 ∈ ∅ 𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))
74, 6mtbir 323 . . . . . . . . 9 ¬ ∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))
87a1i 11 . . . . . . . 8 (𝑝 ∈ ( L ‘𝐴) → ¬ ∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))
98nrex 3058 . . . . . . 7 ¬ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))
109abf 4372 . . . . . 6 {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = ∅
11 rex0 4326 . . . . . . . . . 10 ¬ ∃𝑠 ∈ ∅ 𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))
12 right0s 27812 . . . . . . . . . . 11 ( R ‘ 0s ) = ∅
1312rexeqi 3300 . . . . . . . . . 10 (∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ↔ ∃𝑠 ∈ ∅ 𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))
1411, 13mtbir 323 . . . . . . . . 9 ¬ ∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))
1514a1i 11 . . . . . . . 8 (𝑟 ∈ ( R ‘𝐴) → ¬ ∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))
1615nrex 3058 . . . . . . 7 ¬ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))
1716abf 4372 . . . . . 6 {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} = ∅
1810, 17uneq12i 4132 . . . . 5 ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) = (∅ ∪ ∅)
19 un0 4360 . . . . 5 (∅ ∪ ∅) = ∅
2018, 19eqtri 2753 . . . 4 ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) = ∅
21 rex0 4326 . . . . . . . . . 10 ¬ ∃𝑢 ∈ ∅ 𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))
2212rexeqi 3300 . . . . . . . . . 10 (∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ↔ ∃𝑢 ∈ ∅ 𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
2321, 22mtbir 323 . . . . . . . . 9 ¬ ∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))
2423a1i 11 . . . . . . . 8 (𝑡 ∈ ( L ‘𝐴) → ¬ ∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
2524nrex 3058 . . . . . . 7 ¬ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))
2625abf 4372 . . . . . 6 {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} = ∅
27 rex0 4326 . . . . . . . . . 10 ¬ ∃𝑤 ∈ ∅ 𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))
285rexeqi 3300 . . . . . . . . . 10 (∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ↔ ∃𝑤 ∈ ∅ 𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
2927, 28mtbir 323 . . . . . . . . 9 ¬ ∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))
3029a1i 11 . . . . . . . 8 (𝑣 ∈ ( R ‘𝐴) → ¬ ∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
3130nrex 3058 . . . . . . 7 ¬ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))
3231abf 4372 . . . . . 6 {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} = ∅
3326, 32uneq12i 4132 . . . . 5 ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) = (∅ ∪ ∅)
3433, 19eqtri 2753 . . . 4 ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) = ∅
3520, 34oveq12i 7402 . . 3 (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) = (∅ |s ∅)
36 df-0s 27743 . . 3 0s = (∅ |s ∅)
3735, 36eqtr4i 2756 . 2 (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) = 0s
383, 37eqtrdi 2781 1 (𝐴 No → (𝐴 ·s 0s ) = 0s )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  cun 3915  c0 4299  cfv 6514  (class class class)co 7390   No csur 27558   |s cscut 27701   0s c0s 27741   L cleft 27760   R cright 27761   +s cadds 27873   -s csubs 27933   ·s cmuls 28016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563  df-sslt 27700  df-scut 27702  df-0s 27743  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec2 27863  df-muls 28017
This theorem is referenced by:  mulsrid  28023  muls02  28051  mulsgt0  28054  mulsge0d  28056  slemul1ad  28092  muls0ord  28095  precsexlem9  28124  precsexlem11  28126  n0mulscl  28244  eucliddivs  28272  n0seo  28314  pw2gt0divsd  28335  pw2ge0divsd  28336  pw2divsnegd  28339
  Copyright terms: Public domain W3C validator