MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muls01 Structured version   Visualization version   GIF version

Theorem muls01 28038
Description: Surreal multiplication by zero. (Contributed by Scott Fenton, 4-Feb-2025.)
Assertion
Ref Expression
muls01 (𝐴 No → (𝐴 ·s 0s ) = 0s )

Proof of Theorem muls01
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑝 𝑞 𝑟 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0sno 27758 . . 3 0s No
2 mulsval 28035 . . 3 ((𝐴 No ∧ 0s No ) → (𝐴 ·s 0s ) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
31, 2mpan2 691 . 2 (𝐴 No → (𝐴 ·s 0s ) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
4 rex0 4313 . . . . . . . . . 10 ¬ ∃𝑞 ∈ ∅ 𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))
5 left0s 27825 . . . . . . . . . . 11 ( L ‘ 0s ) = ∅
65rexeqi 3289 . . . . . . . . . 10 (∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ ∃𝑞 ∈ ∅ 𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))
74, 6mtbir 323 . . . . . . . . 9 ¬ ∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))
87a1i 11 . . . . . . . 8 (𝑝 ∈ ( L ‘𝐴) → ¬ ∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))
98nrex 3057 . . . . . . 7 ¬ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))
109abf 4359 . . . . . 6 {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = ∅
11 rex0 4313 . . . . . . . . . 10 ¬ ∃𝑠 ∈ ∅ 𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))
12 right0s 27826 . . . . . . . . . . 11 ( R ‘ 0s ) = ∅
1312rexeqi 3289 . . . . . . . . . 10 (∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ↔ ∃𝑠 ∈ ∅ 𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))
1411, 13mtbir 323 . . . . . . . . 9 ¬ ∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))
1514a1i 11 . . . . . . . 8 (𝑟 ∈ ( R ‘𝐴) → ¬ ∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))
1615nrex 3057 . . . . . . 7 ¬ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))
1716abf 4359 . . . . . 6 {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} = ∅
1810, 17uneq12i 4119 . . . . 5 ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) = (∅ ∪ ∅)
19 un0 4347 . . . . 5 (∅ ∪ ∅) = ∅
2018, 19eqtri 2752 . . . 4 ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) = ∅
21 rex0 4313 . . . . . . . . . 10 ¬ ∃𝑢 ∈ ∅ 𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))
2212rexeqi 3289 . . . . . . . . . 10 (∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ↔ ∃𝑢 ∈ ∅ 𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
2321, 22mtbir 323 . . . . . . . . 9 ¬ ∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))
2423a1i 11 . . . . . . . 8 (𝑡 ∈ ( L ‘𝐴) → ¬ ∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
2524nrex 3057 . . . . . . 7 ¬ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))
2625abf 4359 . . . . . 6 {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} = ∅
27 rex0 4313 . . . . . . . . . 10 ¬ ∃𝑤 ∈ ∅ 𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))
285rexeqi 3289 . . . . . . . . . 10 (∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ↔ ∃𝑤 ∈ ∅ 𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
2927, 28mtbir 323 . . . . . . . . 9 ¬ ∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))
3029a1i 11 . . . . . . . 8 (𝑣 ∈ ( R ‘𝐴) → ¬ ∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
3130nrex 3057 . . . . . . 7 ¬ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))
3231abf 4359 . . . . . 6 {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} = ∅
3326, 32uneq12i 4119 . . . . 5 ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) = (∅ ∪ ∅)
3433, 19eqtri 2752 . . . 4 ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) = ∅
3520, 34oveq12i 7365 . . 3 (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) = (∅ |s ∅)
36 df-0s 27756 . . 3 0s = (∅ |s ∅)
3735, 36eqtr4i 2755 . 2 (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘ 0s )𝑎 = (((𝑝 ·s 0s ) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘ 0s )𝑏 = (((𝑟 ·s 0s ) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘ 0s )𝑐 = (((𝑡 ·s 0s ) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘ 0s )𝑑 = (((𝑣 ·s 0s ) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) = 0s
383, 37eqtrdi 2780 1 (𝐴 No → (𝐴 ·s 0s ) = 0s )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  cun 3903  c0 4286  cfv 6486  (class class class)co 7353   No csur 27567   |s cscut 27711   0s c0s 27754   L cleft 27773   R cright 27774   +s cadds 27889   -s csubs 27949   ·s cmuls 28032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-no 27570  df-slt 27571  df-bday 27572  df-sslt 27710  df-scut 27712  df-0s 27756  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec2 27879  df-muls 28033
This theorem is referenced by:  mulsrid  28039  muls02  28067  mulsgt0  28070  mulsge0d  28072  slemul1ad  28108  muls0ord  28111  precsexlem9  28140  precsexlem11  28142  n0mulscl  28260  eucliddivs  28288  n0seo  28331  pw2gt0divsd  28355  pw2ge0divsd  28356  pw2divsnegd  28359
  Copyright terms: Public domain W3C validator