MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fi0 Structured version   Visualization version   GIF version

Theorem fi0 9310
Description: The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
fi0 (fi‘∅) = ∅

Proof of Theorem fi0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5247 . . 3 ∅ ∈ V
2 fival 9302 . . 3 (∅ ∈ V → (fi‘∅) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = 𝑥})
31, 2ax-mp 5 . 2 (fi‘∅) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = 𝑥}
4 vprc 5255 . . . 4 ¬ V ∈ V
5 id 22 . . . . . . 7 (𝑦 = 𝑥𝑦 = 𝑥)
6 elinel1 4150 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 ∈ 𝒫 ∅)
7 elpwi 4556 . . . . . . . . . 10 (𝑥 ∈ 𝒫 ∅ → 𝑥 ⊆ ∅)
8 ss0 4351 . . . . . . . . . 10 (𝑥 ⊆ ∅ → 𝑥 = ∅)
96, 7, 83syl 18 . . . . . . . . 9 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = ∅)
109inteqd 4902 . . . . . . . 8 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = ∅)
11 int0 4912 . . . . . . . 8 ∅ = V
1210, 11eqtrdi 2782 . . . . . . 7 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = V)
135, 12sylan9eqr 2788 . . . . . 6 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑦 = V)
1413rexlimiva 3125 . . . . 5 (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = 𝑥𝑦 = V)
15 vex 3440 . . . . 5 𝑦 ∈ V
1614, 15eqeltrrdi 2840 . . . 4 (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = 𝑥 → V ∈ V)
174, 16mto 197 . . 3 ¬ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = 𝑥
1817abf 4355 . 2 {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = 𝑥} = ∅
193, 18eqtri 2754 1 (fi‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436  cin 3896  wss 3897  c0 4282  𝒫 cpw 4549   cint 4897  cfv 6487  Fincfn 8875  ficfi 9300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6443  df-fun 6489  df-fv 6495  df-fi 9301
This theorem is referenced by:  fieq0  9311  firest  17342  restbas  23079
  Copyright terms: Public domain W3C validator