| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fi0 | Structured version Visualization version GIF version | ||
| Description: The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| fi0 | ⊢ (fi‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5243 | . . 3 ⊢ ∅ ∈ V | |
| 2 | fival 9291 | . . 3 ⊢ (∅ ∈ V → (fi‘∅) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥}) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (fi‘∅) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥} |
| 4 | vprc 5251 | . . . 4 ⊢ ¬ V ∈ V | |
| 5 | id 22 | . . . . . . 7 ⊢ (𝑦 = ∩ 𝑥 → 𝑦 = ∩ 𝑥) | |
| 6 | elinel1 4149 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 ∈ 𝒫 ∅) | |
| 7 | elpwi 4555 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝒫 ∅ → 𝑥 ⊆ ∅) | |
| 8 | ss0 4350 | . . . . . . . . . 10 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
| 9 | 6, 7, 8 | 3syl 18 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = ∅) |
| 10 | 9 | inteqd 4900 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → ∩ 𝑥 = ∩ ∅) |
| 11 | int0 4910 | . . . . . . . 8 ⊢ ∩ ∅ = V | |
| 12 | 10, 11 | eqtrdi 2781 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → ∩ 𝑥 = V) |
| 13 | 5, 12 | sylan9eqr 2787 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → 𝑦 = V) |
| 14 | 13 | rexlimiva 3123 | . . . . 5 ⊢ (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥 → 𝑦 = V) |
| 15 | vex 3438 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 16 | 14, 15 | eqeltrrdi 2838 | . . . 4 ⊢ (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥 → V ∈ V) |
| 17 | 4, 16 | mto 197 | . . 3 ⊢ ¬ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥 |
| 18 | 17 | abf 4354 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥} = ∅ |
| 19 | 3, 18 | eqtri 2753 | 1 ⊢ (fi‘∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2110 {cab 2708 ∃wrex 3054 Vcvv 3434 ∩ cin 3899 ⊆ wss 3900 ∅c0 4281 𝒫 cpw 4548 ∩ cint 4895 ‘cfv 6477 Fincfn 8864 ficfi 9289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6433 df-fun 6479 df-fv 6485 df-fi 9290 |
| This theorem is referenced by: fieq0 9300 firest 17328 restbas 23066 |
| Copyright terms: Public domain | W3C validator |