MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fi0 Structured version   Visualization version   GIF version

Theorem fi0 9299
Description: The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
fi0 (fi‘∅) = ∅

Proof of Theorem fi0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5243 . . 3 ∅ ∈ V
2 fival 9291 . . 3 (∅ ∈ V → (fi‘∅) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = 𝑥})
31, 2ax-mp 5 . 2 (fi‘∅) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = 𝑥}
4 vprc 5251 . . . 4 ¬ V ∈ V
5 id 22 . . . . . . 7 (𝑦 = 𝑥𝑦 = 𝑥)
6 elinel1 4149 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 ∈ 𝒫 ∅)
7 elpwi 4555 . . . . . . . . . 10 (𝑥 ∈ 𝒫 ∅ → 𝑥 ⊆ ∅)
8 ss0 4350 . . . . . . . . . 10 (𝑥 ⊆ ∅ → 𝑥 = ∅)
96, 7, 83syl 18 . . . . . . . . 9 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = ∅)
109inteqd 4900 . . . . . . . 8 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = ∅)
11 int0 4910 . . . . . . . 8 ∅ = V
1210, 11eqtrdi 2781 . . . . . . 7 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = V)
135, 12sylan9eqr 2787 . . . . . 6 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑦 = V)
1413rexlimiva 3123 . . . . 5 (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = 𝑥𝑦 = V)
15 vex 3438 . . . . 5 𝑦 ∈ V
1614, 15eqeltrrdi 2838 . . . 4 (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = 𝑥 → V ∈ V)
174, 16mto 197 . . 3 ¬ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = 𝑥
1817abf 4354 . 2 {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = 𝑥} = ∅
193, 18eqtri 2753 1 (fi‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2110  {cab 2708  wrex 3054  Vcvv 3434  cin 3899  wss 3900  c0 4281  𝒫 cpw 4548   cint 4895  cfv 6477  Fincfn 8864  ficfi 9289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-fi 9290
This theorem is referenced by:  fieq0  9300  firest  17328  restbas  23066
  Copyright terms: Public domain W3C validator