Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fi0 | Structured version Visualization version GIF version |
Description: The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
fi0 | ⊢ (fi‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5170 | . . 3 ⊢ ∅ ∈ V | |
2 | fival 8894 | . . 3 ⊢ (∅ ∈ V → (fi‘∅) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥}) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (fi‘∅) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥} |
4 | vprc 5178 | . . . 4 ⊢ ¬ V ∈ V | |
5 | id 22 | . . . . . . 7 ⊢ (𝑦 = ∩ 𝑥 → 𝑦 = ∩ 𝑥) | |
6 | elinel1 4096 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 ∈ 𝒫 ∅) | |
7 | elpwi 4496 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝒫 ∅ → 𝑥 ⊆ ∅) | |
8 | ss0 4288 | . . . . . . . . . 10 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
9 | 6, 7, 8 | 3syl 18 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = ∅) |
10 | 9 | inteqd 4836 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → ∩ 𝑥 = ∩ ∅) |
11 | int0 4845 | . . . . . . . 8 ⊢ ∩ ∅ = V | |
12 | 10, 11 | eqtrdi 2810 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 ∅ ∩ Fin) → ∩ 𝑥 = V) |
13 | 5, 12 | sylan9eqr 2816 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑦 = ∩ 𝑥) → 𝑦 = V) |
14 | 13 | rexlimiva 3203 | . . . . 5 ⊢ (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥 → 𝑦 = V) |
15 | vex 3411 | . . . . 5 ⊢ 𝑦 ∈ V | |
16 | 14, 15 | eqeltrrdi 2860 | . . . 4 ⊢ (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥 → V ∈ V) |
17 | 4, 16 | mto 200 | . . 3 ⊢ ¬ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥 |
18 | 17 | abf 4292 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑦 = ∩ 𝑥} = ∅ |
19 | 3, 18 | eqtri 2782 | 1 ⊢ (fi‘∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 {cab 2736 ∃wrex 3069 Vcvv 3407 ∩ cin 3853 ⊆ wss 3854 ∅c0 4221 𝒫 cpw 4487 ∩ cint 4831 ‘cfv 6328 Fincfn 8520 ficfi 8892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-ral 3073 df-rex 3074 df-rab 3077 df-v 3409 df-sbc 3694 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-op 4522 df-uni 4792 df-int 4832 df-br 5026 df-opab 5088 df-mpt 5106 df-id 5423 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-iota 6287 df-fun 6330 df-fv 6336 df-fi 8893 |
This theorem is referenced by: fieq0 8903 firest 16749 restbas 21843 |
Copyright terms: Public domain | W3C validator |