MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsrid Structured version   Visualization version   GIF version

Theorem addsrid 28015
Description: Surreal addition to zero is identity. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.)
Assertion
Ref Expression
addsrid (𝐴 No → (𝐴 +s 0s ) = 𝐴)

Proof of Theorem addsrid
Dummy variables 𝑎 𝑏 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . . 3 (𝑎 = 𝑏 → (𝑎 +s 0s ) = (𝑏 +s 0s ))
2 id 22 . . 3 (𝑎 = 𝑏𝑎 = 𝑏)
31, 2eqeq12d 2756 . 2 (𝑎 = 𝑏 → ((𝑎 +s 0s ) = 𝑎 ↔ (𝑏 +s 0s ) = 𝑏))
4 oveq1 7455 . . 3 (𝑎 = 𝐴 → (𝑎 +s 0s ) = (𝐴 +s 0s ))
5 id 22 . . 3 (𝑎 = 𝐴𝑎 = 𝐴)
64, 5eqeq12d 2756 . 2 (𝑎 = 𝐴 → ((𝑎 +s 0s ) = 𝑎 ↔ (𝐴 +s 0s ) = 𝐴))
7 0sno 27889 . . . . . 6 0s No
8 addsval 28013 . . . . . 6 ((𝑎 No ∧ 0s No ) → (𝑎 +s 0s ) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)})))
97, 8mpan2 690 . . . . 5 (𝑎 No → (𝑎 +s 0s ) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)})))
109adantr 480 . . . 4 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (𝑎 +s 0s ) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)})))
11 elun1 4205 . . . . . . . . . . . . 13 (𝑦 ∈ ( L ‘𝑎) → 𝑦 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)))
12 simpr 484 . . . . . . . . . . . . 13 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏)
13 oveq1 7455 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦 → (𝑏 +s 0s ) = (𝑦 +s 0s ))
14 id 22 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦𝑏 = 𝑦)
1513, 14eqeq12d 2756 . . . . . . . . . . . . . 14 (𝑏 = 𝑦 → ((𝑏 +s 0s ) = 𝑏 ↔ (𝑦 +s 0s ) = 𝑦))
1615rspcva 3633 . . . . . . . . . . . . 13 ((𝑦 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)) ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (𝑦 +s 0s ) = 𝑦)
1711, 12, 16syl2anr 596 . . . . . . . . . . . 12 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑦 ∈ ( L ‘𝑎)) → (𝑦 +s 0s ) = 𝑦)
1817eqeq2d 2751 . . . . . . . . . . 11 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑦 ∈ ( L ‘𝑎)) → (𝑥 = (𝑦 +s 0s ) ↔ 𝑥 = 𝑦))
19 equcom 2017 . . . . . . . . . . 11 (𝑥 = 𝑦𝑦 = 𝑥)
2018, 19bitrdi 287 . . . . . . . . . 10 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑦 ∈ ( L ‘𝑎)) → (𝑥 = (𝑦 +s 0s ) ↔ 𝑦 = 𝑥))
2120rexbidva 3183 . . . . . . . . 9 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s ) ↔ ∃𝑦 ∈ ( L ‘𝑎)𝑦 = 𝑥))
22 risset 3239 . . . . . . . . 9 (𝑥 ∈ ( L ‘𝑎) ↔ ∃𝑦 ∈ ( L ‘𝑎)𝑦 = 𝑥)
2321, 22bitr4di 289 . . . . . . . 8 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s ) ↔ 𝑥 ∈ ( L ‘𝑎)))
2423eqabcdv 2879 . . . . . . 7 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} = ( L ‘𝑎))
25 rex0 4383 . . . . . . . . . 10 ¬ ∃𝑦 ∈ ∅ 𝑧 = (𝑎 +s 𝑦)
26 left0s 27949 . . . . . . . . . . 11 ( L ‘ 0s ) = ∅
2726rexeqi 3333 . . . . . . . . . 10 (∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦) ↔ ∃𝑦 ∈ ∅ 𝑧 = (𝑎 +s 𝑦))
2825, 27mtbir 323 . . . . . . . . 9 ¬ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)
2928abf 4429 . . . . . . . 8 {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)} = ∅
3029a1i 11 . . . . . . 7 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)} = ∅)
3124, 30uneq12d 4192 . . . . . 6 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) = (( L ‘𝑎) ∪ ∅))
32 un0 4417 . . . . . 6 (( L ‘𝑎) ∪ ∅) = ( L ‘𝑎)
3331, 32eqtrdi 2796 . . . . 5 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) = ( L ‘𝑎))
34 elun2 4206 . . . . . . . . . . . . 13 (𝑤 ∈ ( R ‘𝑎) → 𝑤 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)))
35 oveq1 7455 . . . . . . . . . . . . . . 15 (𝑏 = 𝑤 → (𝑏 +s 0s ) = (𝑤 +s 0s ))
36 id 22 . . . . . . . . . . . . . . 15 (𝑏 = 𝑤𝑏 = 𝑤)
3735, 36eqeq12d 2756 . . . . . . . . . . . . . 14 (𝑏 = 𝑤 → ((𝑏 +s 0s ) = 𝑏 ↔ (𝑤 +s 0s ) = 𝑤))
3837rspcva 3633 . . . . . . . . . . . . 13 ((𝑤 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)) ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (𝑤 +s 0s ) = 𝑤)
3934, 12, 38syl2anr 596 . . . . . . . . . . . 12 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑤 ∈ ( R ‘𝑎)) → (𝑤 +s 0s ) = 𝑤)
4039eqeq2d 2751 . . . . . . . . . . 11 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑤 ∈ ( R ‘𝑎)) → (𝑥 = (𝑤 +s 0s ) ↔ 𝑥 = 𝑤))
41 equcom 2017 . . . . . . . . . . 11 (𝑥 = 𝑤𝑤 = 𝑥)
4240, 41bitrdi 287 . . . . . . . . . 10 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑤 ∈ ( R ‘𝑎)) → (𝑥 = (𝑤 +s 0s ) ↔ 𝑤 = 𝑥))
4342rexbidva 3183 . . . . . . . . 9 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s ) ↔ ∃𝑤 ∈ ( R ‘𝑎)𝑤 = 𝑥))
44 risset 3239 . . . . . . . . 9 (𝑥 ∈ ( R ‘𝑎) ↔ ∃𝑤 ∈ ( R ‘𝑎)𝑤 = 𝑥)
4543, 44bitr4di 289 . . . . . . . 8 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s ) ↔ 𝑥 ∈ ( R ‘𝑎)))
4645eqabcdv 2879 . . . . . . 7 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → {𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} = ( R ‘𝑎))
47 rex0 4383 . . . . . . . . . 10 ¬ ∃𝑤 ∈ ∅ 𝑧 = (𝑎 +s 𝑤)
48 right0s 27950 . . . . . . . . . . 11 ( R ‘ 0s ) = ∅
4948rexeqi 3333 . . . . . . . . . 10 (∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤) ↔ ∃𝑤 ∈ ∅ 𝑧 = (𝑎 +s 𝑤))
5047, 49mtbir 323 . . . . . . . . 9 ¬ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)
5150abf 4429 . . . . . . . 8 {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)} = ∅
5251a1i 11 . . . . . . 7 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)} = ∅)
5346, 52uneq12d 4192 . . . . . 6 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)}) = (( R ‘𝑎) ∪ ∅))
54 un0 4417 . . . . . 6 (( R ‘𝑎) ∪ ∅) = ( R ‘𝑎)
5553, 54eqtrdi 2796 . . . . 5 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)}) = ( R ‘𝑎))
5633, 55oveq12d 7466 . . . 4 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)})) = (( L ‘𝑎) |s ( R ‘𝑎)))
57 lrcut 27959 . . . . 5 (𝑎 No → (( L ‘𝑎) |s ( R ‘𝑎)) = 𝑎)
5857adantr 480 . . . 4 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (( L ‘𝑎) |s ( R ‘𝑎)) = 𝑎)
5910, 56, 583eqtrd 2784 . . 3 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (𝑎 +s 0s ) = 𝑎)
6059ex 412 . 2 (𝑎 No → (∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏 → (𝑎 +s 0s ) = 𝑎))
613, 6, 60noinds 27996 1 (𝐴 No → (𝐴 +s 0s ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  cun 3974  c0 4352  cfv 6573  (class class class)co 7448   No csur 27702   |s cscut 27845   0s c0s 27885   L cleft 27902   R cright 27903   +s cadds 28010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec2 28000  df-adds 28011
This theorem is referenced by:  addsridd  28016  addslid  28019  addsfo  28034  addsgt0d  28065  subsfo  28113  subsid1  28116  precsexlem11  28259  1p1e2s  28418  nohalf  28425
  Copyright terms: Public domain W3C validator