| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oveq1 7439 | . . 3
⊢ (𝑎 = 𝑏 → (𝑎 +s 0s ) = (𝑏 +s 0s
)) | 
| 2 |  | id 22 | . . 3
⊢ (𝑎 = 𝑏 → 𝑎 = 𝑏) | 
| 3 | 1, 2 | eqeq12d 2752 | . 2
⊢ (𝑎 = 𝑏 → ((𝑎 +s 0s ) = 𝑎 ↔ (𝑏 +s 0s ) = 𝑏)) | 
| 4 |  | oveq1 7439 | . . 3
⊢ (𝑎 = 𝐴 → (𝑎 +s 0s ) = (𝐴 +s 0s
)) | 
| 5 |  | id 22 | . . 3
⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | 
| 6 | 4, 5 | eqeq12d 2752 | . 2
⊢ (𝑎 = 𝐴 → ((𝑎 +s 0s ) = 𝑎 ↔ (𝐴 +s 0s ) = 𝐴)) | 
| 7 |  | 0sno 27872 | . . . . . 6
⊢ 
0s ∈  No | 
| 8 |  | addsval 27996 | . . . . . 6
⊢ ((𝑎 ∈ 
No  ∧ 0s ∈  No ) →
(𝑎 +s
0s ) = (({𝑥
∣ ∃𝑦 ∈ ( L
‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘
0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘
0s )𝑧 = (𝑎 +s 𝑤)}))) | 
| 9 | 7, 8 | mpan2 691 | . . . . 5
⊢ (𝑎 ∈ 
No  → (𝑎
+s 0s ) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘
0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘
0s )𝑧 = (𝑎 +s 𝑤)}))) | 
| 10 | 9 | adantr 480 | . . . 4
⊢ ((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) → (𝑎 +s 0s ) =
(({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘
0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘
0s )𝑧 = (𝑎 +s 𝑤)}))) | 
| 11 |  | elun1 4181 | . . . . . . . . . . . . 13
⊢ (𝑦 ∈ ( L ‘𝑎) → 𝑦 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))) | 
| 12 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ ((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) → ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) | 
| 13 |  | oveq1 7439 | . . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑦 → (𝑏 +s 0s ) = (𝑦 +s 0s
)) | 
| 14 |  | id 22 | . . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑦 → 𝑏 = 𝑦) | 
| 15 | 13, 14 | eqeq12d 2752 | . . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑦 → ((𝑏 +s 0s ) = 𝑏 ↔ (𝑦 +s 0s ) = 𝑦)) | 
| 16 | 15 | rspcva 3619 | . . . . . . . . . . . . 13
⊢ ((𝑦 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)) ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (𝑦 +s 0s ) = 𝑦) | 
| 17 | 11, 12, 16 | syl2anr 597 | . . . . . . . . . . . 12
⊢ (((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) ∧ 𝑦 ∈ ( L ‘𝑎)) → (𝑦 +s 0s ) = 𝑦) | 
| 18 | 17 | eqeq2d 2747 | . . . . . . . . . . 11
⊢ (((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) ∧ 𝑦 ∈ ( L ‘𝑎)) → (𝑥 = (𝑦 +s 0s ) ↔ 𝑥 = 𝑦)) | 
| 19 |  | equcom 2016 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | 
| 20 | 18, 19 | bitrdi 287 | . . . . . . . . . 10
⊢ (((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) ∧ 𝑦 ∈ ( L ‘𝑎)) → (𝑥 = (𝑦 +s 0s ) ↔ 𝑦 = 𝑥)) | 
| 21 | 20 | rexbidva 3176 | . . . . . . . . 9
⊢ ((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) → (∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s ) ↔
∃𝑦 ∈ ( L
‘𝑎)𝑦 = 𝑥)) | 
| 22 |  | risset 3232 | . . . . . . . . 9
⊢ (𝑥 ∈ ( L ‘𝑎) ↔ ∃𝑦 ∈ ( L ‘𝑎)𝑦 = 𝑥) | 
| 23 | 21, 22 | bitr4di 289 | . . . . . . . 8
⊢ ((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) → (∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s ) ↔ 𝑥 ∈ ( L ‘𝑎))) | 
| 24 | 23 | eqabcdv 2875 | . . . . . . 7
⊢ ((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} = ( L
‘𝑎)) | 
| 25 |  | rex0 4359 | . . . . . . . . . 10
⊢  ¬
∃𝑦 ∈ ∅
𝑧 = (𝑎 +s 𝑦) | 
| 26 |  | left0s 27932 | . . . . . . . . . . 11
⊢ ( L
‘ 0s ) = ∅ | 
| 27 | 26 | rexeqi 3324 | . . . . . . . . . 10
⊢
(∃𝑦 ∈ ( L
‘ 0s )𝑧 =
(𝑎 +s 𝑦) ↔ ∃𝑦 ∈ ∅ 𝑧 = (𝑎 +s 𝑦)) | 
| 28 | 25, 27 | mtbir 323 | . . . . . . . . 9
⊢  ¬
∃𝑦 ∈ ( L ‘
0s )𝑧 = (𝑎 +s 𝑦) | 
| 29 | 28 | abf 4405 | . . . . . . . 8
⊢ {𝑧 ∣ ∃𝑦 ∈ ( L ‘
0s )𝑧 = (𝑎 +s 𝑦)} = ∅ | 
| 30 | 29 | a1i 11 | . . . . . . 7
⊢ ((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) → {𝑧 ∣ ∃𝑦 ∈ ( L ‘
0s )𝑧 = (𝑎 +s 𝑦)} = ∅) | 
| 31 | 24, 30 | uneq12d 4168 | . . . . . 6
⊢ ((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘
0s )𝑧 = (𝑎 +s 𝑦)}) = (( L ‘𝑎) ∪
∅)) | 
| 32 |  | un0 4393 | . . . . . 6
⊢ (( L
‘𝑎) ∪ ∅) =
( L ‘𝑎) | 
| 33 | 31, 32 | eqtrdi 2792 | . . . . 5
⊢ ((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘
0s )𝑧 = (𝑎 +s 𝑦)}) = ( L ‘𝑎)) | 
| 34 |  | elun2 4182 | . . . . . . . . . . . . 13
⊢ (𝑤 ∈ ( R ‘𝑎) → 𝑤 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))) | 
| 35 |  | oveq1 7439 | . . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑤 → (𝑏 +s 0s ) = (𝑤 +s 0s
)) | 
| 36 |  | id 22 | . . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑤 → 𝑏 = 𝑤) | 
| 37 | 35, 36 | eqeq12d 2752 | . . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑤 → ((𝑏 +s 0s ) = 𝑏 ↔ (𝑤 +s 0s ) = 𝑤)) | 
| 38 | 37 | rspcva 3619 | . . . . . . . . . . . . 13
⊢ ((𝑤 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)) ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (𝑤 +s 0s ) = 𝑤) | 
| 39 | 34, 12, 38 | syl2anr 597 | . . . . . . . . . . . 12
⊢ (((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) ∧ 𝑤 ∈ ( R ‘𝑎)) → (𝑤 +s 0s ) = 𝑤) | 
| 40 | 39 | eqeq2d 2747 | . . . . . . . . . . 11
⊢ (((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) ∧ 𝑤 ∈ ( R ‘𝑎)) → (𝑥 = (𝑤 +s 0s ) ↔ 𝑥 = 𝑤)) | 
| 41 |  | equcom 2016 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑤 ↔ 𝑤 = 𝑥) | 
| 42 | 40, 41 | bitrdi 287 | . . . . . . . . . 10
⊢ (((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) ∧ 𝑤 ∈ ( R ‘𝑎)) → (𝑥 = (𝑤 +s 0s ) ↔ 𝑤 = 𝑥)) | 
| 43 | 42 | rexbidva 3176 | . . . . . . . . 9
⊢ ((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) → (∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s ) ↔
∃𝑤 ∈ ( R
‘𝑎)𝑤 = 𝑥)) | 
| 44 |  | risset 3232 | . . . . . . . . 9
⊢ (𝑥 ∈ ( R ‘𝑎) ↔ ∃𝑤 ∈ ( R ‘𝑎)𝑤 = 𝑥) | 
| 45 | 43, 44 | bitr4di 289 | . . . . . . . 8
⊢ ((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) → (∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s ) ↔ 𝑥 ∈ ( R ‘𝑎))) | 
| 46 | 45 | eqabcdv 2875 | . . . . . . 7
⊢ ((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) → {𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} = ( R
‘𝑎)) | 
| 47 |  | rex0 4359 | . . . . . . . . . 10
⊢  ¬
∃𝑤 ∈ ∅
𝑧 = (𝑎 +s 𝑤) | 
| 48 |  | right0s 27933 | . . . . . . . . . . 11
⊢ ( R
‘ 0s ) = ∅ | 
| 49 | 48 | rexeqi 3324 | . . . . . . . . . 10
⊢
(∃𝑤 ∈ ( R
‘ 0s )𝑧 =
(𝑎 +s 𝑤) ↔ ∃𝑤 ∈ ∅ 𝑧 = (𝑎 +s 𝑤)) | 
| 50 | 47, 49 | mtbir 323 | . . . . . . . . 9
⊢  ¬
∃𝑤 ∈ ( R ‘
0s )𝑧 = (𝑎 +s 𝑤) | 
| 51 | 50 | abf 4405 | . . . . . . . 8
⊢ {𝑧 ∣ ∃𝑤 ∈ ( R ‘
0s )𝑧 = (𝑎 +s 𝑤)} = ∅ | 
| 52 | 51 | a1i 11 | . . . . . . 7
⊢ ((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) → {𝑧 ∣ ∃𝑤 ∈ ( R ‘
0s )𝑧 = (𝑎 +s 𝑤)} = ∅) | 
| 53 | 46, 52 | uneq12d 4168 | . . . . . 6
⊢ ((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) → ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘
0s )𝑧 = (𝑎 +s 𝑤)}) = (( R ‘𝑎) ∪
∅)) | 
| 54 |  | un0 4393 | . . . . . 6
⊢ (( R
‘𝑎) ∪ ∅) =
( R ‘𝑎) | 
| 55 | 53, 54 | eqtrdi 2792 | . . . . 5
⊢ ((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) → ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘
0s )𝑧 = (𝑎 +s 𝑤)}) = ( R ‘𝑎)) | 
| 56 | 33, 55 | oveq12d 7450 | . . . 4
⊢ ((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) → (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘
0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘
0s )𝑧 = (𝑎 +s 𝑤)})) = (( L ‘𝑎) |s ( R ‘𝑎))) | 
| 57 |  | lrcut 27942 | . . . . 5
⊢ (𝑎 ∈ 
No  → (( L ‘𝑎) |s ( R ‘𝑎)) = 𝑎) | 
| 58 | 57 | adantr 480 | . . . 4
⊢ ((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) → (( L ‘𝑎) |s ( R ‘𝑎)) = 𝑎) | 
| 59 | 10, 56, 58 | 3eqtrd 2780 | . . 3
⊢ ((𝑎 ∈ 
No  ∧ ∀𝑏
∈ (( L ‘𝑎) ∪
( R ‘𝑎))(𝑏 +s 0s ) =
𝑏) → (𝑎 +s 0s ) =
𝑎) | 
| 60 | 59 | ex 412 | . 2
⊢ (𝑎 ∈ 
No  → (∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏 → (𝑎 +s 0s ) = 𝑎)) | 
| 61 | 3, 6, 60 | noinds 27979 | 1
⊢ (𝐴 ∈ 
No  → (𝐴
+s 0s ) = 𝐴) |