MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsrid Structured version   Visualization version   GIF version

Theorem addsrid 27928
Description: Surreal addition to zero is identity. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.)
Assertion
Ref Expression
addsrid (𝐴 No → (𝐴 +s 0s ) = 𝐴)

Proof of Theorem addsrid
Dummy variables 𝑎 𝑏 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7417 . . 3 (𝑎 = 𝑏 → (𝑎 +s 0s ) = (𝑏 +s 0s ))
2 id 22 . . 3 (𝑎 = 𝑏𝑎 = 𝑏)
31, 2eqeq12d 2752 . 2 (𝑎 = 𝑏 → ((𝑎 +s 0s ) = 𝑎 ↔ (𝑏 +s 0s ) = 𝑏))
4 oveq1 7417 . . 3 (𝑎 = 𝐴 → (𝑎 +s 0s ) = (𝐴 +s 0s ))
5 id 22 . . 3 (𝑎 = 𝐴𝑎 = 𝐴)
64, 5eqeq12d 2752 . 2 (𝑎 = 𝐴 → ((𝑎 +s 0s ) = 𝑎 ↔ (𝐴 +s 0s ) = 𝐴))
7 0sno 27795 . . . . . 6 0s No
8 addsval 27926 . . . . . 6 ((𝑎 No ∧ 0s No ) → (𝑎 +s 0s ) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)})))
97, 8mpan2 691 . . . . 5 (𝑎 No → (𝑎 +s 0s ) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)})))
109adantr 480 . . . 4 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (𝑎 +s 0s ) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)})))
11 elun1 4162 . . . . . . . . . . . . 13 (𝑦 ∈ ( L ‘𝑎) → 𝑦 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)))
12 simpr 484 . . . . . . . . . . . . 13 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏)
13 oveq1 7417 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦 → (𝑏 +s 0s ) = (𝑦 +s 0s ))
14 id 22 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦𝑏 = 𝑦)
1513, 14eqeq12d 2752 . . . . . . . . . . . . . 14 (𝑏 = 𝑦 → ((𝑏 +s 0s ) = 𝑏 ↔ (𝑦 +s 0s ) = 𝑦))
1615rspcva 3604 . . . . . . . . . . . . 13 ((𝑦 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)) ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (𝑦 +s 0s ) = 𝑦)
1711, 12, 16syl2anr 597 . . . . . . . . . . . 12 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑦 ∈ ( L ‘𝑎)) → (𝑦 +s 0s ) = 𝑦)
1817eqeq2d 2747 . . . . . . . . . . 11 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑦 ∈ ( L ‘𝑎)) → (𝑥 = (𝑦 +s 0s ) ↔ 𝑥 = 𝑦))
19 equcom 2018 . . . . . . . . . . 11 (𝑥 = 𝑦𝑦 = 𝑥)
2018, 19bitrdi 287 . . . . . . . . . 10 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑦 ∈ ( L ‘𝑎)) → (𝑥 = (𝑦 +s 0s ) ↔ 𝑦 = 𝑥))
2120rexbidva 3163 . . . . . . . . 9 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s ) ↔ ∃𝑦 ∈ ( L ‘𝑎)𝑦 = 𝑥))
22 risset 3221 . . . . . . . . 9 (𝑥 ∈ ( L ‘𝑎) ↔ ∃𝑦 ∈ ( L ‘𝑎)𝑦 = 𝑥)
2321, 22bitr4di 289 . . . . . . . 8 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s ) ↔ 𝑥 ∈ ( L ‘𝑎)))
2423eqabcdv 2870 . . . . . . 7 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} = ( L ‘𝑎))
25 rex0 4340 . . . . . . . . . 10 ¬ ∃𝑦 ∈ ∅ 𝑧 = (𝑎 +s 𝑦)
26 left0s 27861 . . . . . . . . . . 11 ( L ‘ 0s ) = ∅
2726rexeqi 3308 . . . . . . . . . 10 (∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦) ↔ ∃𝑦 ∈ ∅ 𝑧 = (𝑎 +s 𝑦))
2825, 27mtbir 323 . . . . . . . . 9 ¬ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)
2928abf 4386 . . . . . . . 8 {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)} = ∅
3029a1i 11 . . . . . . 7 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)} = ∅)
3124, 30uneq12d 4149 . . . . . 6 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) = (( L ‘𝑎) ∪ ∅))
32 un0 4374 . . . . . 6 (( L ‘𝑎) ∪ ∅) = ( L ‘𝑎)
3331, 32eqtrdi 2787 . . . . 5 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) = ( L ‘𝑎))
34 elun2 4163 . . . . . . . . . . . . 13 (𝑤 ∈ ( R ‘𝑎) → 𝑤 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)))
35 oveq1 7417 . . . . . . . . . . . . . . 15 (𝑏 = 𝑤 → (𝑏 +s 0s ) = (𝑤 +s 0s ))
36 id 22 . . . . . . . . . . . . . . 15 (𝑏 = 𝑤𝑏 = 𝑤)
3735, 36eqeq12d 2752 . . . . . . . . . . . . . 14 (𝑏 = 𝑤 → ((𝑏 +s 0s ) = 𝑏 ↔ (𝑤 +s 0s ) = 𝑤))
3837rspcva 3604 . . . . . . . . . . . . 13 ((𝑤 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)) ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (𝑤 +s 0s ) = 𝑤)
3934, 12, 38syl2anr 597 . . . . . . . . . . . 12 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑤 ∈ ( R ‘𝑎)) → (𝑤 +s 0s ) = 𝑤)
4039eqeq2d 2747 . . . . . . . . . . 11 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑤 ∈ ( R ‘𝑎)) → (𝑥 = (𝑤 +s 0s ) ↔ 𝑥 = 𝑤))
41 equcom 2018 . . . . . . . . . . 11 (𝑥 = 𝑤𝑤 = 𝑥)
4240, 41bitrdi 287 . . . . . . . . . 10 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑤 ∈ ( R ‘𝑎)) → (𝑥 = (𝑤 +s 0s ) ↔ 𝑤 = 𝑥))
4342rexbidva 3163 . . . . . . . . 9 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s ) ↔ ∃𝑤 ∈ ( R ‘𝑎)𝑤 = 𝑥))
44 risset 3221 . . . . . . . . 9 (𝑥 ∈ ( R ‘𝑎) ↔ ∃𝑤 ∈ ( R ‘𝑎)𝑤 = 𝑥)
4543, 44bitr4di 289 . . . . . . . 8 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s ) ↔ 𝑥 ∈ ( R ‘𝑎)))
4645eqabcdv 2870 . . . . . . 7 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → {𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} = ( R ‘𝑎))
47 rex0 4340 . . . . . . . . . 10 ¬ ∃𝑤 ∈ ∅ 𝑧 = (𝑎 +s 𝑤)
48 right0s 27862 . . . . . . . . . . 11 ( R ‘ 0s ) = ∅
4948rexeqi 3308 . . . . . . . . . 10 (∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤) ↔ ∃𝑤 ∈ ∅ 𝑧 = (𝑎 +s 𝑤))
5047, 49mtbir 323 . . . . . . . . 9 ¬ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)
5150abf 4386 . . . . . . . 8 {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)} = ∅
5251a1i 11 . . . . . . 7 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)} = ∅)
5346, 52uneq12d 4149 . . . . . 6 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)}) = (( R ‘𝑎) ∪ ∅))
54 un0 4374 . . . . . 6 (( R ‘𝑎) ∪ ∅) = ( R ‘𝑎)
5553, 54eqtrdi 2787 . . . . 5 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)}) = ( R ‘𝑎))
5633, 55oveq12d 7428 . . . 4 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)})) = (( L ‘𝑎) |s ( R ‘𝑎)))
57 lrcut 27872 . . . . 5 (𝑎 No → (( L ‘𝑎) |s ( R ‘𝑎)) = 𝑎)
5857adantr 480 . . . 4 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (( L ‘𝑎) |s ( R ‘𝑎)) = 𝑎)
5910, 56, 583eqtrd 2775 . . 3 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (𝑎 +s 0s ) = 𝑎)
6059ex 412 . 2 (𝑎 No → (∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏 → (𝑎 +s 0s ) = 𝑎))
613, 6, 60noinds 27909 1 (𝐴 No → (𝐴 +s 0s ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2714  wral 3052  wrex 3061  cun 3929  c0 4313  cfv 6536  (class class class)co 7410   No csur 27608   |s cscut 27751   0s c0s 27791   L cleft 27810   R cright 27811   +s cadds 27923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612  df-bday 27613  df-sslt 27750  df-scut 27752  df-0s 27793  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec2 27913  df-adds 27924
This theorem is referenced by:  addsridd  27929  addslid  27932  addsfo  27947  addsgt0d  27978  subsfo  28026  subsid1  28029  precsexlem11  28176  1p1e2s  28359  twocut  28366
  Copyright terms: Public domain W3C validator