MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsrid Structured version   Visualization version   GIF version

Theorem addsrid 27998
Description: Surreal addition to zero is identity. Part of Theorem 3 of [Conway] p. 17. (Contributed by Scott Fenton, 20-Aug-2024.)
Assertion
Ref Expression
addsrid (𝐴 No → (𝐴 +s 0s ) = 𝐴)

Proof of Theorem addsrid
Dummy variables 𝑎 𝑏 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7439 . . 3 (𝑎 = 𝑏 → (𝑎 +s 0s ) = (𝑏 +s 0s ))
2 id 22 . . 3 (𝑎 = 𝑏𝑎 = 𝑏)
31, 2eqeq12d 2752 . 2 (𝑎 = 𝑏 → ((𝑎 +s 0s ) = 𝑎 ↔ (𝑏 +s 0s ) = 𝑏))
4 oveq1 7439 . . 3 (𝑎 = 𝐴 → (𝑎 +s 0s ) = (𝐴 +s 0s ))
5 id 22 . . 3 (𝑎 = 𝐴𝑎 = 𝐴)
64, 5eqeq12d 2752 . 2 (𝑎 = 𝐴 → ((𝑎 +s 0s ) = 𝑎 ↔ (𝐴 +s 0s ) = 𝐴))
7 0sno 27872 . . . . . 6 0s No
8 addsval 27996 . . . . . 6 ((𝑎 No ∧ 0s No ) → (𝑎 +s 0s ) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)})))
97, 8mpan2 691 . . . . 5 (𝑎 No → (𝑎 +s 0s ) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)})))
109adantr 480 . . . 4 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (𝑎 +s 0s ) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)})))
11 elun1 4181 . . . . . . . . . . . . 13 (𝑦 ∈ ( L ‘𝑎) → 𝑦 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)))
12 simpr 484 . . . . . . . . . . . . 13 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏)
13 oveq1 7439 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦 → (𝑏 +s 0s ) = (𝑦 +s 0s ))
14 id 22 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦𝑏 = 𝑦)
1513, 14eqeq12d 2752 . . . . . . . . . . . . . 14 (𝑏 = 𝑦 → ((𝑏 +s 0s ) = 𝑏 ↔ (𝑦 +s 0s ) = 𝑦))
1615rspcva 3619 . . . . . . . . . . . . 13 ((𝑦 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)) ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (𝑦 +s 0s ) = 𝑦)
1711, 12, 16syl2anr 597 . . . . . . . . . . . 12 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑦 ∈ ( L ‘𝑎)) → (𝑦 +s 0s ) = 𝑦)
1817eqeq2d 2747 . . . . . . . . . . 11 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑦 ∈ ( L ‘𝑎)) → (𝑥 = (𝑦 +s 0s ) ↔ 𝑥 = 𝑦))
19 equcom 2016 . . . . . . . . . . 11 (𝑥 = 𝑦𝑦 = 𝑥)
2018, 19bitrdi 287 . . . . . . . . . 10 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑦 ∈ ( L ‘𝑎)) → (𝑥 = (𝑦 +s 0s ) ↔ 𝑦 = 𝑥))
2120rexbidva 3176 . . . . . . . . 9 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s ) ↔ ∃𝑦 ∈ ( L ‘𝑎)𝑦 = 𝑥))
22 risset 3232 . . . . . . . . 9 (𝑥 ∈ ( L ‘𝑎) ↔ ∃𝑦 ∈ ( L ‘𝑎)𝑦 = 𝑥)
2321, 22bitr4di 289 . . . . . . . 8 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s ) ↔ 𝑥 ∈ ( L ‘𝑎)))
2423eqabcdv 2875 . . . . . . 7 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} = ( L ‘𝑎))
25 rex0 4359 . . . . . . . . . 10 ¬ ∃𝑦 ∈ ∅ 𝑧 = (𝑎 +s 𝑦)
26 left0s 27932 . . . . . . . . . . 11 ( L ‘ 0s ) = ∅
2726rexeqi 3324 . . . . . . . . . 10 (∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦) ↔ ∃𝑦 ∈ ∅ 𝑧 = (𝑎 +s 𝑦))
2825, 27mtbir 323 . . . . . . . . 9 ¬ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)
2928abf 4405 . . . . . . . 8 {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)} = ∅
3029a1i 11 . . . . . . 7 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)} = ∅)
3124, 30uneq12d 4168 . . . . . 6 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) = (( L ‘𝑎) ∪ ∅))
32 un0 4393 . . . . . 6 (( L ‘𝑎) ∪ ∅) = ( L ‘𝑎)
3331, 32eqtrdi 2792 . . . . 5 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) = ( L ‘𝑎))
34 elun2 4182 . . . . . . . . . . . . 13 (𝑤 ∈ ( R ‘𝑎) → 𝑤 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)))
35 oveq1 7439 . . . . . . . . . . . . . . 15 (𝑏 = 𝑤 → (𝑏 +s 0s ) = (𝑤 +s 0s ))
36 id 22 . . . . . . . . . . . . . . 15 (𝑏 = 𝑤𝑏 = 𝑤)
3735, 36eqeq12d 2752 . . . . . . . . . . . . . 14 (𝑏 = 𝑤 → ((𝑏 +s 0s ) = 𝑏 ↔ (𝑤 +s 0s ) = 𝑤))
3837rspcva 3619 . . . . . . . . . . . . 13 ((𝑤 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎)) ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (𝑤 +s 0s ) = 𝑤)
3934, 12, 38syl2anr 597 . . . . . . . . . . . 12 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑤 ∈ ( R ‘𝑎)) → (𝑤 +s 0s ) = 𝑤)
4039eqeq2d 2747 . . . . . . . . . . 11 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑤 ∈ ( R ‘𝑎)) → (𝑥 = (𝑤 +s 0s ) ↔ 𝑥 = 𝑤))
41 equcom 2016 . . . . . . . . . . 11 (𝑥 = 𝑤𝑤 = 𝑥)
4240, 41bitrdi 287 . . . . . . . . . 10 (((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) ∧ 𝑤 ∈ ( R ‘𝑎)) → (𝑥 = (𝑤 +s 0s ) ↔ 𝑤 = 𝑥))
4342rexbidva 3176 . . . . . . . . 9 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s ) ↔ ∃𝑤 ∈ ( R ‘𝑎)𝑤 = 𝑥))
44 risset 3232 . . . . . . . . 9 (𝑥 ∈ ( R ‘𝑎) ↔ ∃𝑤 ∈ ( R ‘𝑎)𝑤 = 𝑥)
4543, 44bitr4di 289 . . . . . . . 8 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s ) ↔ 𝑥 ∈ ( R ‘𝑎)))
4645eqabcdv 2875 . . . . . . 7 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → {𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} = ( R ‘𝑎))
47 rex0 4359 . . . . . . . . . 10 ¬ ∃𝑤 ∈ ∅ 𝑧 = (𝑎 +s 𝑤)
48 right0s 27933 . . . . . . . . . . 11 ( R ‘ 0s ) = ∅
4948rexeqi 3324 . . . . . . . . . 10 (∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤) ↔ ∃𝑤 ∈ ∅ 𝑧 = (𝑎 +s 𝑤))
5047, 49mtbir 323 . . . . . . . . 9 ¬ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)
5150abf 4405 . . . . . . . 8 {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)} = ∅
5251a1i 11 . . . . . . 7 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)} = ∅)
5346, 52uneq12d 4168 . . . . . 6 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)}) = (( R ‘𝑎) ∪ ∅))
54 un0 4393 . . . . . 6 (( R ‘𝑎) ∪ ∅) = ( R ‘𝑎)
5553, 54eqtrdi 2792 . . . . 5 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)}) = ( R ‘𝑎))
5633, 55oveq12d 7450 . . . 4 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝑎)𝑥 = (𝑦 +s 0s )} ∪ {𝑧 ∣ ∃𝑦 ∈ ( L ‘ 0s )𝑧 = (𝑎 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑤 ∈ ( R ‘𝑎)𝑥 = (𝑤 +s 0s )} ∪ {𝑧 ∣ ∃𝑤 ∈ ( R ‘ 0s )𝑧 = (𝑎 +s 𝑤)})) = (( L ‘𝑎) |s ( R ‘𝑎)))
57 lrcut 27942 . . . . 5 (𝑎 No → (( L ‘𝑎) |s ( R ‘𝑎)) = 𝑎)
5857adantr 480 . . . 4 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (( L ‘𝑎) |s ( R ‘𝑎)) = 𝑎)
5910, 56, 583eqtrd 2780 . . 3 ((𝑎 No ∧ ∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏) → (𝑎 +s 0s ) = 𝑎)
6059ex 412 . 2 (𝑎 No → (∀𝑏 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))(𝑏 +s 0s ) = 𝑏 → (𝑎 +s 0s ) = 𝑎))
613, 6, 60noinds 27979 1 (𝐴 No → (𝐴 +s 0s ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2713  wral 3060  wrex 3069  cun 3948  c0 4332  cfv 6560  (class class class)co 7432   No csur 27685   |s cscut 27828   0s c0s 27868   L cleft 27885   R cright 27886   +s cadds 27993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-1o 8507  df-2o 8508  df-no 27688  df-slt 27689  df-bday 27690  df-sslt 27827  df-scut 27829  df-0s 27870  df-made 27887  df-old 27888  df-left 27890  df-right 27891  df-norec2 27983  df-adds 27994
This theorem is referenced by:  addsridd  27999  addslid  28002  addsfo  28017  addsgt0d  28048  subsfo  28096  subsid1  28099  precsexlem11  28242  1p1e2s  28401  nohalf  28408
  Copyright terms: Public domain W3C validator