![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij1lem1 | Structured version Visualization version GIF version |
Description: Lemma for ackbij2 10311. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij1lem1 | ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∩ suc 𝐴) = (𝐵 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6401 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | 1 | ineq2i 4238 | . . 3 ⊢ (𝐵 ∩ suc 𝐴) = (𝐵 ∩ (𝐴 ∪ {𝐴})) |
3 | indi 4303 | . . 3 ⊢ (𝐵 ∩ (𝐴 ∪ {𝐴})) = ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) | |
4 | 2, 3 | eqtri 2768 | . 2 ⊢ (𝐵 ∩ suc 𝐴) = ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) |
5 | disjsn 4736 | . . . . 5 ⊢ ((𝐵 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐵) | |
6 | 5 | biimpri 228 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∩ {𝐴}) = ∅) |
7 | 6 | uneq2d 4191 | . . 3 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) = ((𝐵 ∩ 𝐴) ∪ ∅)) |
8 | un0 4417 | . . 3 ⊢ ((𝐵 ∩ 𝐴) ∪ ∅) = (𝐵 ∩ 𝐴) | |
9 | 7, 8 | eqtrdi 2796 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) = (𝐵 ∩ 𝐴)) |
10 | 4, 9 | eqtrid 2792 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∩ suc 𝐴) = (𝐵 ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 {csn 4648 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-nul 4353 df-sn 4649 df-suc 6401 |
This theorem is referenced by: ackbij1lem15 10302 ackbij1lem16 10303 |
Copyright terms: Public domain | W3C validator |