| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij2 10133. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij1lem1 | ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∩ suc 𝐴) = (𝐵 ∩ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 6312 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 2 | 1 | ineq2i 4164 | . . 3 ⊢ (𝐵 ∩ suc 𝐴) = (𝐵 ∩ (𝐴 ∪ {𝐴})) |
| 3 | indi 4231 | . . 3 ⊢ (𝐵 ∩ (𝐴 ∪ {𝐴})) = ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) | |
| 4 | 2, 3 | eqtri 2754 | . 2 ⊢ (𝐵 ∩ suc 𝐴) = ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) |
| 5 | disjsn 4661 | . . . . 5 ⊢ ((𝐵 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐵) | |
| 6 | 5 | biimpri 228 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∩ {𝐴}) = ∅) |
| 7 | 6 | uneq2d 4115 | . . 3 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) = ((𝐵 ∩ 𝐴) ∪ ∅)) |
| 8 | un0 4341 | . . 3 ⊢ ((𝐵 ∩ 𝐴) ∪ ∅) = (𝐵 ∩ 𝐴) | |
| 9 | 7, 8 | eqtrdi 2782 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) = (𝐵 ∩ 𝐴)) |
| 10 | 4, 9 | eqtrid 2778 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∩ suc 𝐴) = (𝐵 ∩ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ∩ cin 3896 ∅c0 4280 {csn 4573 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-nul 4281 df-sn 4574 df-suc 6312 |
| This theorem is referenced by: ackbij1lem15 10124 ackbij1lem16 10125 |
| Copyright terms: Public domain | W3C validator |