![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij1lem1 | Structured version Visualization version GIF version |
Description: Lemma for ackbij2 10237. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij1lem1 | ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∩ suc 𝐴) = (𝐵 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6370 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | 1 | ineq2i 4209 | . . 3 ⊢ (𝐵 ∩ suc 𝐴) = (𝐵 ∩ (𝐴 ∪ {𝐴})) |
3 | indi 4273 | . . 3 ⊢ (𝐵 ∩ (𝐴 ∪ {𝐴})) = ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) | |
4 | 2, 3 | eqtri 2760 | . 2 ⊢ (𝐵 ∩ suc 𝐴) = ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) |
5 | disjsn 4715 | . . . . 5 ⊢ ((𝐵 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐵) | |
6 | 5 | biimpri 227 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∩ {𝐴}) = ∅) |
7 | 6 | uneq2d 4163 | . . 3 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) = ((𝐵 ∩ 𝐴) ∪ ∅)) |
8 | un0 4390 | . . 3 ⊢ ((𝐵 ∩ 𝐴) ∪ ∅) = (𝐵 ∩ 𝐴) | |
9 | 7, 8 | eqtrdi 2788 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) = (𝐵 ∩ 𝐴)) |
10 | 4, 9 | eqtrid 2784 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∩ suc 𝐴) = (𝐵 ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 ∪ cun 3946 ∩ cin 3947 ∅c0 4322 {csn 4628 suc csuc 6366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-nul 4323 df-sn 4629 df-suc 6370 |
This theorem is referenced by: ackbij1lem15 10228 ackbij1lem16 10229 |
Copyright terms: Public domain | W3C validator |