MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem1 Structured version   Visualization version   GIF version

Theorem ackbij1lem1 10179
Description: Lemma for ackbij2 10202. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
ackbij1lem1 𝐴𝐵 → (𝐵 ∩ suc 𝐴) = (𝐵𝐴))

Proof of Theorem ackbij1lem1
StepHypRef Expression
1 df-suc 6341 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
21ineq2i 4183 . . 3 (𝐵 ∩ suc 𝐴) = (𝐵 ∩ (𝐴 ∪ {𝐴}))
3 indi 4250 . . 3 (𝐵 ∩ (𝐴 ∪ {𝐴})) = ((𝐵𝐴) ∪ (𝐵 ∩ {𝐴}))
42, 3eqtri 2753 . 2 (𝐵 ∩ suc 𝐴) = ((𝐵𝐴) ∪ (𝐵 ∩ {𝐴}))
5 disjsn 4678 . . . . 5 ((𝐵 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐵)
65biimpri 228 . . . 4 𝐴𝐵 → (𝐵 ∩ {𝐴}) = ∅)
76uneq2d 4134 . . 3 𝐴𝐵 → ((𝐵𝐴) ∪ (𝐵 ∩ {𝐴})) = ((𝐵𝐴) ∪ ∅))
8 un0 4360 . . 3 ((𝐵𝐴) ∪ ∅) = (𝐵𝐴)
97, 8eqtrdi 2781 . 2 𝐴𝐵 → ((𝐵𝐴) ∪ (𝐵 ∩ {𝐴})) = (𝐵𝐴))
104, 9eqtrid 2777 1 𝐴𝐵 → (𝐵 ∩ suc 𝐴) = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  cun 3915  cin 3916  c0 4299  {csn 4592  suc csuc 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-nul 4300  df-sn 4593  df-suc 6341
This theorem is referenced by:  ackbij1lem15  10193  ackbij1lem16  10194
  Copyright terms: Public domain W3C validator