MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij2 Structured version   Visualization version   GIF version

Theorem ackbij2 10128
Description: The Ackermann bijection, part 2: hereditarily finite sets can be represented by recursive binary notation. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypotheses
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
ackbij.g 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))))
ackbij.h 𝐻 = (rec(𝐺, ∅) “ ω)
Assertion
Ref Expression
ackbij2 𝐻: (𝑅1 “ ω)–1-1-onto→ω
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦

Proof of Theorem ackbij2
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6817 . . . . . 6 (𝑎 = 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝑏))
2 fvex 6830 . . . . . 6 (rec(𝐺, ∅)‘𝑎) ∈ V
31, 2f1iun 7871 . . . . 5 (∀𝑎 ∈ ω ((rec(𝐺, ∅)‘𝑎):(𝑅1𝑎)–1-1→ω ∧ ∀𝑏 ∈ ω ((rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏) ∨ (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎))) → 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎): 𝑎 ∈ ω (𝑅1𝑎)–1-1→ω)
4 ackbij.f . . . . . . . . 9 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
5 ackbij.g . . . . . . . . 9 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))))
64, 5ackbij2lem2 10125 . . . . . . . 8 (𝑎 ∈ ω → (rec(𝐺, ∅)‘𝑎):(𝑅1𝑎)–1-1-onto→(card‘(𝑅1𝑎)))
7 f1of1 6757 . . . . . . . 8 ((rec(𝐺, ∅)‘𝑎):(𝑅1𝑎)–1-1-onto→(card‘(𝑅1𝑎)) → (rec(𝐺, ∅)‘𝑎):(𝑅1𝑎)–1-1→(card‘(𝑅1𝑎)))
86, 7syl 17 . . . . . . 7 (𝑎 ∈ ω → (rec(𝐺, ∅)‘𝑎):(𝑅1𝑎)–1-1→(card‘(𝑅1𝑎)))
9 ordom 7801 . . . . . . . 8 Ord ω
10 r1fin 9661 . . . . . . . . 9 (𝑎 ∈ ω → (𝑅1𝑎) ∈ Fin)
11 ficardom 9849 . . . . . . . . 9 ((𝑅1𝑎) ∈ Fin → (card‘(𝑅1𝑎)) ∈ ω)
1210, 11syl 17 . . . . . . . 8 (𝑎 ∈ ω → (card‘(𝑅1𝑎)) ∈ ω)
13 ordelss 6317 . . . . . . . 8 ((Ord ω ∧ (card‘(𝑅1𝑎)) ∈ ω) → (card‘(𝑅1𝑎)) ⊆ ω)
149, 12, 13sylancr 587 . . . . . . 7 (𝑎 ∈ ω → (card‘(𝑅1𝑎)) ⊆ ω)
15 f1ss 6719 . . . . . . 7 (((rec(𝐺, ∅)‘𝑎):(𝑅1𝑎)–1-1→(card‘(𝑅1𝑎)) ∧ (card‘(𝑅1𝑎)) ⊆ ω) → (rec(𝐺, ∅)‘𝑎):(𝑅1𝑎)–1-1→ω)
168, 14, 15syl2anc 584 . . . . . 6 (𝑎 ∈ ω → (rec(𝐺, ∅)‘𝑎):(𝑅1𝑎)–1-1→ω)
17 nnord 7799 . . . . . . . . 9 (𝑎 ∈ ω → Ord 𝑎)
18 nnord 7799 . . . . . . . . 9 (𝑏 ∈ ω → Ord 𝑏)
19 ordtri2or2 6402 . . . . . . . . 9 ((Ord 𝑎 ∧ Ord 𝑏) → (𝑎𝑏𝑏𝑎))
2017, 18, 19syl2an 596 . . . . . . . 8 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑎𝑏𝑏𝑎))
214, 5ackbij2lem4 10127 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ 𝑎 ∈ ω) ∧ 𝑎𝑏) → (rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏))
2221ex 412 . . . . . . . . . 10 ((𝑏 ∈ ω ∧ 𝑎 ∈ ω) → (𝑎𝑏 → (rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏)))
2322ancoms 458 . . . . . . . . 9 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑎𝑏 → (rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏)))
244, 5ackbij2lem4 10127 . . . . . . . . . 10 (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑎) → (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎))
2524ex 412 . . . . . . . . 9 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑏𝑎 → (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎)))
2623, 25orim12d 966 . . . . . . . 8 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝑎𝑏𝑏𝑎) → ((rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏) ∨ (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎))))
2720, 26mpd 15 . . . . . . 7 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏) ∨ (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎)))
2827ralrimiva 3124 . . . . . 6 (𝑎 ∈ ω → ∀𝑏 ∈ ω ((rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏) ∨ (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎)))
2916, 28jca 511 . . . . 5 (𝑎 ∈ ω → ((rec(𝐺, ∅)‘𝑎):(𝑅1𝑎)–1-1→ω ∧ ∀𝑏 ∈ ω ((rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏) ∨ (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎))))
303, 29mprg 3053 . . . 4 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎): 𝑎 ∈ ω (𝑅1𝑎)–1-1→ω
31 rdgfun 8330 . . . . . 6 Fun rec(𝐺, ∅)
32 funiunfv 7177 . . . . . . 7 (Fun rec(𝐺, ∅) → 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅) “ ω))
3332eqcomd 2737 . . . . . 6 (Fun rec(𝐺, ∅) → (rec(𝐺, ∅) “ ω) = 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎))
34 f1eq1 6709 . . . . . 6 ( (rec(𝐺, ∅) “ ω) = 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎) → ( (rec(𝐺, ∅) “ ω): (𝑅1 “ ω)–1-1→ω ↔ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎): (𝑅1 “ ω)–1-1→ω))
3531, 33, 34mp2b 10 . . . . 5 ( (rec(𝐺, ∅) “ ω): (𝑅1 “ ω)–1-1→ω ↔ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎): (𝑅1 “ ω)–1-1→ω)
36 r1funlim 9654 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
3736simpli 483 . . . . . 6 Fun 𝑅1
38 funiunfv 7177 . . . . . 6 (Fun 𝑅1 𝑎 ∈ ω (𝑅1𝑎) = (𝑅1 “ ω))
39 f1eq2 6710 . . . . . 6 ( 𝑎 ∈ ω (𝑅1𝑎) = (𝑅1 “ ω) → ( 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎): 𝑎 ∈ ω (𝑅1𝑎)–1-1→ω ↔ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎): (𝑅1 “ ω)–1-1→ω))
4037, 38, 39mp2b 10 . . . . 5 ( 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎): 𝑎 ∈ ω (𝑅1𝑎)–1-1→ω ↔ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎): (𝑅1 “ ω)–1-1→ω)
4135, 40bitr4i 278 . . . 4 ( (rec(𝐺, ∅) “ ω): (𝑅1 “ ω)–1-1→ω ↔ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎): 𝑎 ∈ ω (𝑅1𝑎)–1-1→ω)
4230, 41mpbir 231 . . 3 (rec(𝐺, ∅) “ ω): (𝑅1 “ ω)–1-1→ω
43 rnuni 6090 . . . 4 ran (rec(𝐺, ∅) “ ω) = 𝑎 ∈ (rec(𝐺, ∅) “ ω)ran 𝑎
44 eliun 4940 . . . . . 6 (𝑏 𝑎 ∈ (rec(𝐺, ∅) “ ω)ran 𝑎 ↔ ∃𝑎 ∈ (rec(𝐺, ∅) “ ω)𝑏 ∈ ran 𝑎)
45 df-rex 3057 . . . . . 6 (∃𝑎 ∈ (rec(𝐺, ∅) “ ω)𝑏 ∈ ran 𝑎 ↔ ∃𝑎(𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎))
46 funfn 6506 . . . . . . . . . . . 12 (Fun rec(𝐺, ∅) ↔ rec(𝐺, ∅) Fn dom rec(𝐺, ∅))
4731, 46mpbi 230 . . . . . . . . . . 11 rec(𝐺, ∅) Fn dom rec(𝐺, ∅)
48 rdgdmlim 8331 . . . . . . . . . . . 12 Lim dom rec(𝐺, ∅)
49 limomss 7796 . . . . . . . . . . . 12 (Lim dom rec(𝐺, ∅) → ω ⊆ dom rec(𝐺, ∅))
5048, 49ax-mp 5 . . . . . . . . . . 11 ω ⊆ dom rec(𝐺, ∅)
51 fvelimab 6889 . . . . . . . . . . 11 ((rec(𝐺, ∅) Fn dom rec(𝐺, ∅) ∧ ω ⊆ dom rec(𝐺, ∅)) → (𝑎 ∈ (rec(𝐺, ∅) “ ω) ↔ ∃𝑐 ∈ ω (rec(𝐺, ∅)‘𝑐) = 𝑎))
5247, 50, 51mp2an 692 . . . . . . . . . 10 (𝑎 ∈ (rec(𝐺, ∅) “ ω) ↔ ∃𝑐 ∈ ω (rec(𝐺, ∅)‘𝑐) = 𝑎)
534, 5ackbij2lem2 10125 . . . . . . . . . . . . . 14 (𝑐 ∈ ω → (rec(𝐺, ∅)‘𝑐):(𝑅1𝑐)–1-1-onto→(card‘(𝑅1𝑐)))
54 f1ofo 6765 . . . . . . . . . . . . . 14 ((rec(𝐺, ∅)‘𝑐):(𝑅1𝑐)–1-1-onto→(card‘(𝑅1𝑐)) → (rec(𝐺, ∅)‘𝑐):(𝑅1𝑐)–onto→(card‘(𝑅1𝑐)))
55 forn 6733 . . . . . . . . . . . . . 14 ((rec(𝐺, ∅)‘𝑐):(𝑅1𝑐)–onto→(card‘(𝑅1𝑐)) → ran (rec(𝐺, ∅)‘𝑐) = (card‘(𝑅1𝑐)))
5653, 54, 553syl 18 . . . . . . . . . . . . 13 (𝑐 ∈ ω → ran (rec(𝐺, ∅)‘𝑐) = (card‘(𝑅1𝑐)))
57 r1fin 9661 . . . . . . . . . . . . . . 15 (𝑐 ∈ ω → (𝑅1𝑐) ∈ Fin)
58 ficardom 9849 . . . . . . . . . . . . . . 15 ((𝑅1𝑐) ∈ Fin → (card‘(𝑅1𝑐)) ∈ ω)
5957, 58syl 17 . . . . . . . . . . . . . 14 (𝑐 ∈ ω → (card‘(𝑅1𝑐)) ∈ ω)
60 ordelss 6317 . . . . . . . . . . . . . 14 ((Ord ω ∧ (card‘(𝑅1𝑐)) ∈ ω) → (card‘(𝑅1𝑐)) ⊆ ω)
619, 59, 60sylancr 587 . . . . . . . . . . . . 13 (𝑐 ∈ ω → (card‘(𝑅1𝑐)) ⊆ ω)
6256, 61eqsstrd 3964 . . . . . . . . . . . 12 (𝑐 ∈ ω → ran (rec(𝐺, ∅)‘𝑐) ⊆ ω)
63 rneq 5871 . . . . . . . . . . . . 13 ((rec(𝐺, ∅)‘𝑐) = 𝑎 → ran (rec(𝐺, ∅)‘𝑐) = ran 𝑎)
6463sseq1d 3961 . . . . . . . . . . . 12 ((rec(𝐺, ∅)‘𝑐) = 𝑎 → (ran (rec(𝐺, ∅)‘𝑐) ⊆ ω ↔ ran 𝑎 ⊆ ω))
6562, 64syl5ibcom 245 . . . . . . . . . . 11 (𝑐 ∈ ω → ((rec(𝐺, ∅)‘𝑐) = 𝑎 → ran 𝑎 ⊆ ω))
6665rexlimiv 3126 . . . . . . . . . 10 (∃𝑐 ∈ ω (rec(𝐺, ∅)‘𝑐) = 𝑎 → ran 𝑎 ⊆ ω)
6752, 66sylbi 217 . . . . . . . . 9 (𝑎 ∈ (rec(𝐺, ∅) “ ω) → ran 𝑎 ⊆ ω)
6867sselda 3929 . . . . . . . 8 ((𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎) → 𝑏 ∈ ω)
6968exlimiv 1931 . . . . . . 7 (∃𝑎(𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎) → 𝑏 ∈ ω)
70 peano2 7815 . . . . . . . . 9 (𝑏 ∈ ω → suc 𝑏 ∈ ω)
71 fnfvima 7162 . . . . . . . . 9 ((rec(𝐺, ∅) Fn dom rec(𝐺, ∅) ∧ ω ⊆ dom rec(𝐺, ∅) ∧ suc 𝑏 ∈ ω) → (rec(𝐺, ∅)‘suc 𝑏) ∈ (rec(𝐺, ∅) “ ω))
7247, 50, 70, 71mp3an12i 1467 . . . . . . . 8 (𝑏 ∈ ω → (rec(𝐺, ∅)‘suc 𝑏) ∈ (rec(𝐺, ∅) “ ω))
73 vex 3440 . . . . . . . . . 10 𝑏 ∈ V
74 cardnn 9851 . . . . . . . . . . . 12 (suc 𝑏 ∈ ω → (card‘suc 𝑏) = suc 𝑏)
75 fvex 6830 . . . . . . . . . . . . . 14 (𝑅1‘suc 𝑏) ∈ V
7636simpri 485 . . . . . . . . . . . . . . . . 17 Lim dom 𝑅1
77 limomss 7796 . . . . . . . . . . . . . . . . 17 (Lim dom 𝑅1 → ω ⊆ dom 𝑅1)
7876, 77ax-mp 5 . . . . . . . . . . . . . . . 16 ω ⊆ dom 𝑅1
7978sseli 3925 . . . . . . . . . . . . . . 15 (suc 𝑏 ∈ ω → suc 𝑏 ∈ dom 𝑅1)
80 onssr1 9719 . . . . . . . . . . . . . . 15 (suc 𝑏 ∈ dom 𝑅1 → suc 𝑏 ⊆ (𝑅1‘suc 𝑏))
8179, 80syl 17 . . . . . . . . . . . . . 14 (suc 𝑏 ∈ ω → suc 𝑏 ⊆ (𝑅1‘suc 𝑏))
82 ssdomg 8917 . . . . . . . . . . . . . 14 ((𝑅1‘suc 𝑏) ∈ V → (suc 𝑏 ⊆ (𝑅1‘suc 𝑏) → suc 𝑏 ≼ (𝑅1‘suc 𝑏)))
8375, 81, 82mpsyl 68 . . . . . . . . . . . . 13 (suc 𝑏 ∈ ω → suc 𝑏 ≼ (𝑅1‘suc 𝑏))
84 nnon 7797 . . . . . . . . . . . . . . 15 (suc 𝑏 ∈ ω → suc 𝑏 ∈ On)
85 onenon 9837 . . . . . . . . . . . . . . 15 (suc 𝑏 ∈ On → suc 𝑏 ∈ dom card)
8684, 85syl 17 . . . . . . . . . . . . . 14 (suc 𝑏 ∈ ω → suc 𝑏 ∈ dom card)
87 r1fin 9661 . . . . . . . . . . . . . . 15 (suc 𝑏 ∈ ω → (𝑅1‘suc 𝑏) ∈ Fin)
88 finnum 9836 . . . . . . . . . . . . . . 15 ((𝑅1‘suc 𝑏) ∈ Fin → (𝑅1‘suc 𝑏) ∈ dom card)
8987, 88syl 17 . . . . . . . . . . . . . 14 (suc 𝑏 ∈ ω → (𝑅1‘suc 𝑏) ∈ dom card)
90 carddom2 9865 . . . . . . . . . . . . . 14 ((suc 𝑏 ∈ dom card ∧ (𝑅1‘suc 𝑏) ∈ dom card) → ((card‘suc 𝑏) ⊆ (card‘(𝑅1‘suc 𝑏)) ↔ suc 𝑏 ≼ (𝑅1‘suc 𝑏)))
9186, 89, 90syl2anc 584 . . . . . . . . . . . . 13 (suc 𝑏 ∈ ω → ((card‘suc 𝑏) ⊆ (card‘(𝑅1‘suc 𝑏)) ↔ suc 𝑏 ≼ (𝑅1‘suc 𝑏)))
9283, 91mpbird 257 . . . . . . . . . . . 12 (suc 𝑏 ∈ ω → (card‘suc 𝑏) ⊆ (card‘(𝑅1‘suc 𝑏)))
9374, 92eqsstrrd 3965 . . . . . . . . . . 11 (suc 𝑏 ∈ ω → suc 𝑏 ⊆ (card‘(𝑅1‘suc 𝑏)))
9470, 93syl 17 . . . . . . . . . 10 (𝑏 ∈ ω → suc 𝑏 ⊆ (card‘(𝑅1‘suc 𝑏)))
95 sucssel 6398 . . . . . . . . . 10 (𝑏 ∈ V → (suc 𝑏 ⊆ (card‘(𝑅1‘suc 𝑏)) → 𝑏 ∈ (card‘(𝑅1‘suc 𝑏))))
9673, 94, 95mpsyl 68 . . . . . . . . 9 (𝑏 ∈ ω → 𝑏 ∈ (card‘(𝑅1‘suc 𝑏)))
974, 5ackbij2lem2 10125 . . . . . . . . . 10 (suc 𝑏 ∈ ω → (rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc 𝑏)))
98 f1ofo 6765 . . . . . . . . . 10 ((rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc 𝑏)) → (rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–onto→(card‘(𝑅1‘suc 𝑏)))
99 forn 6733 . . . . . . . . . 10 ((rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–onto→(card‘(𝑅1‘suc 𝑏)) → ran (rec(𝐺, ∅)‘suc 𝑏) = (card‘(𝑅1‘suc 𝑏)))
10070, 97, 98, 994syl 19 . . . . . . . . 9 (𝑏 ∈ ω → ran (rec(𝐺, ∅)‘suc 𝑏) = (card‘(𝑅1‘suc 𝑏)))
10196, 100eleqtrrd 2834 . . . . . . . 8 (𝑏 ∈ ω → 𝑏 ∈ ran (rec(𝐺, ∅)‘suc 𝑏))
102 fvex 6830 . . . . . . . . 9 (rec(𝐺, ∅)‘suc 𝑏) ∈ V
103 eleq1 2819 . . . . . . . . . 10 (𝑎 = (rec(𝐺, ∅)‘suc 𝑏) → (𝑎 ∈ (rec(𝐺, ∅) “ ω) ↔ (rec(𝐺, ∅)‘suc 𝑏) ∈ (rec(𝐺, ∅) “ ω)))
104 rneq 5871 . . . . . . . . . . 11 (𝑎 = (rec(𝐺, ∅)‘suc 𝑏) → ran 𝑎 = ran (rec(𝐺, ∅)‘suc 𝑏))
105104eleq2d 2817 . . . . . . . . . 10 (𝑎 = (rec(𝐺, ∅)‘suc 𝑏) → (𝑏 ∈ ran 𝑎𝑏 ∈ ran (rec(𝐺, ∅)‘suc 𝑏)))
106103, 105anbi12d 632 . . . . . . . . 9 (𝑎 = (rec(𝐺, ∅)‘suc 𝑏) → ((𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎) ↔ ((rec(𝐺, ∅)‘suc 𝑏) ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran (rec(𝐺, ∅)‘suc 𝑏))))
107102, 106spcev 3556 . . . . . . . 8 (((rec(𝐺, ∅)‘suc 𝑏) ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran (rec(𝐺, ∅)‘suc 𝑏)) → ∃𝑎(𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎))
10872, 101, 107syl2anc 584 . . . . . . 7 (𝑏 ∈ ω → ∃𝑎(𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎))
10969, 108impbii 209 . . . . . 6 (∃𝑎(𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎) ↔ 𝑏 ∈ ω)
11044, 45, 1093bitri 297 . . . . 5 (𝑏 𝑎 ∈ (rec(𝐺, ∅) “ ω)ran 𝑎𝑏 ∈ ω)
111110eqriv 2728 . . . 4 𝑎 ∈ (rec(𝐺, ∅) “ ω)ran 𝑎 = ω
11243, 111eqtri 2754 . . 3 ran (rec(𝐺, ∅) “ ω) = ω
113 dff1o5 6767 . . 3 ( (rec(𝐺, ∅) “ ω): (𝑅1 “ ω)–1-1-onto→ω ↔ ( (rec(𝐺, ∅) “ ω): (𝑅1 “ ω)–1-1→ω ∧ ran (rec(𝐺, ∅) “ ω) = ω))
11442, 112, 113mpbir2an 711 . 2 (rec(𝐺, ∅) “ ω): (𝑅1 “ ω)–1-1-onto→ω
115 ackbij.h . . 3 𝐻 = (rec(𝐺, ∅) “ ω)
116 f1oeq1 6746 . . 3 (𝐻 = (rec(𝐺, ∅) “ ω) → (𝐻: (𝑅1 “ ω)–1-1-onto→ω ↔ (rec(𝐺, ∅) “ ω): (𝑅1 “ ω)–1-1-onto→ω))
117115, 116ax-mp 5 . 2 (𝐻: (𝑅1 “ ω)–1-1-onto→ω ↔ (rec(𝐺, ∅) “ ω): (𝑅1 “ ω)–1-1-onto→ω)
118114, 117mpbir 231 1 𝐻: (𝑅1 “ ω)–1-1-onto→ω
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cin 3896  wss 3897  c0 4278  𝒫 cpw 4545  {csn 4571   cuni 4854   ciun 4936   class class class wbr 5086  cmpt 5167   × cxp 5609  dom cdm 5611  ran crn 5612  cima 5614  Ord word 6300  Oncon0 6301  Lim wlim 6302  suc csuc 6303  Fun wfun 6470   Fn wfn 6471  1-1wf1 6473  ontowfo 6474  1-1-ontowf1o 6475  cfv 6476  ωcom 7791  reccrdg 8323  cdom 8862  Fincfn 8864  𝑅1cr1 9650  cardccrd 9823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-r1 9652  df-rank 9653  df-dju 9789  df-card 9827
This theorem is referenced by:  r1om  10129
  Copyright terms: Public domain W3C validator