MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij2 Structured version   Visualization version   GIF version

Theorem ackbij2 10155
Description: The Ackermann bijection, part 2: hereditarily finite sets can be represented by recursive binary notation. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypotheses
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
ackbij.g 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))))
ackbij.h 𝐻 = (rec(𝐺, ∅) “ ω)
Assertion
Ref Expression
ackbij2 𝐻: (𝑅1 “ ω)–1-1-onto→ω
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦

Proof of Theorem ackbij2
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . . . . 6 (𝑎 = 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝑏))
2 fvex 6839 . . . . . 6 (rec(𝐺, ∅)‘𝑎) ∈ V
31, 2f1iun 7886 . . . . 5 (∀𝑎 ∈ ω ((rec(𝐺, ∅)‘𝑎):(𝑅1𝑎)–1-1→ω ∧ ∀𝑏 ∈ ω ((rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏) ∨ (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎))) → 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎): 𝑎 ∈ ω (𝑅1𝑎)–1-1→ω)
4 ackbij.f . . . . . . . . 9 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
5 ackbij.g . . . . . . . . 9 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))))
64, 5ackbij2lem2 10152 . . . . . . . 8 (𝑎 ∈ ω → (rec(𝐺, ∅)‘𝑎):(𝑅1𝑎)–1-1-onto→(card‘(𝑅1𝑎)))
7 f1of1 6767 . . . . . . . 8 ((rec(𝐺, ∅)‘𝑎):(𝑅1𝑎)–1-1-onto→(card‘(𝑅1𝑎)) → (rec(𝐺, ∅)‘𝑎):(𝑅1𝑎)–1-1→(card‘(𝑅1𝑎)))
86, 7syl 17 . . . . . . 7 (𝑎 ∈ ω → (rec(𝐺, ∅)‘𝑎):(𝑅1𝑎)–1-1→(card‘(𝑅1𝑎)))
9 ordom 7816 . . . . . . . 8 Ord ω
10 r1fin 9688 . . . . . . . . 9 (𝑎 ∈ ω → (𝑅1𝑎) ∈ Fin)
11 ficardom 9876 . . . . . . . . 9 ((𝑅1𝑎) ∈ Fin → (card‘(𝑅1𝑎)) ∈ ω)
1210, 11syl 17 . . . . . . . 8 (𝑎 ∈ ω → (card‘(𝑅1𝑎)) ∈ ω)
13 ordelss 6327 . . . . . . . 8 ((Ord ω ∧ (card‘(𝑅1𝑎)) ∈ ω) → (card‘(𝑅1𝑎)) ⊆ ω)
149, 12, 13sylancr 587 . . . . . . 7 (𝑎 ∈ ω → (card‘(𝑅1𝑎)) ⊆ ω)
15 f1ss 6729 . . . . . . 7 (((rec(𝐺, ∅)‘𝑎):(𝑅1𝑎)–1-1→(card‘(𝑅1𝑎)) ∧ (card‘(𝑅1𝑎)) ⊆ ω) → (rec(𝐺, ∅)‘𝑎):(𝑅1𝑎)–1-1→ω)
168, 14, 15syl2anc 584 . . . . . 6 (𝑎 ∈ ω → (rec(𝐺, ∅)‘𝑎):(𝑅1𝑎)–1-1→ω)
17 nnord 7814 . . . . . . . . 9 (𝑎 ∈ ω → Ord 𝑎)
18 nnord 7814 . . . . . . . . 9 (𝑏 ∈ ω → Ord 𝑏)
19 ordtri2or2 6412 . . . . . . . . 9 ((Ord 𝑎 ∧ Ord 𝑏) → (𝑎𝑏𝑏𝑎))
2017, 18, 19syl2an 596 . . . . . . . 8 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑎𝑏𝑏𝑎))
214, 5ackbij2lem4 10154 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ 𝑎 ∈ ω) ∧ 𝑎𝑏) → (rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏))
2221ex 412 . . . . . . . . . 10 ((𝑏 ∈ ω ∧ 𝑎 ∈ ω) → (𝑎𝑏 → (rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏)))
2322ancoms 458 . . . . . . . . 9 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑎𝑏 → (rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏)))
244, 5ackbij2lem4 10154 . . . . . . . . . 10 (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏𝑎) → (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎))
2524ex 412 . . . . . . . . 9 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑏𝑎 → (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎)))
2623, 25orim12d 966 . . . . . . . 8 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝑎𝑏𝑏𝑎) → ((rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏) ∨ (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎))))
2720, 26mpd 15 . . . . . . 7 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏) ∨ (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎)))
2827ralrimiva 3121 . . . . . 6 (𝑎 ∈ ω → ∀𝑏 ∈ ω ((rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏) ∨ (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎)))
2916, 28jca 511 . . . . 5 (𝑎 ∈ ω → ((rec(𝐺, ∅)‘𝑎):(𝑅1𝑎)–1-1→ω ∧ ∀𝑏 ∈ ω ((rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏) ∨ (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎))))
303, 29mprg 3050 . . . 4 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎): 𝑎 ∈ ω (𝑅1𝑎)–1-1→ω
31 rdgfun 8345 . . . . . 6 Fun rec(𝐺, ∅)
32 funiunfv 7188 . . . . . . 7 (Fun rec(𝐺, ∅) → 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅) “ ω))
3332eqcomd 2735 . . . . . 6 (Fun rec(𝐺, ∅) → (rec(𝐺, ∅) “ ω) = 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎))
34 f1eq1 6719 . . . . . 6 ( (rec(𝐺, ∅) “ ω) = 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎) → ( (rec(𝐺, ∅) “ ω): (𝑅1 “ ω)–1-1→ω ↔ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎): (𝑅1 “ ω)–1-1→ω))
3531, 33, 34mp2b 10 . . . . 5 ( (rec(𝐺, ∅) “ ω): (𝑅1 “ ω)–1-1→ω ↔ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎): (𝑅1 “ ω)–1-1→ω)
36 r1funlim 9681 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
3736simpli 483 . . . . . 6 Fun 𝑅1
38 funiunfv 7188 . . . . . 6 (Fun 𝑅1 𝑎 ∈ ω (𝑅1𝑎) = (𝑅1 “ ω))
39 f1eq2 6720 . . . . . 6 ( 𝑎 ∈ ω (𝑅1𝑎) = (𝑅1 “ ω) → ( 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎): 𝑎 ∈ ω (𝑅1𝑎)–1-1→ω ↔ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎): (𝑅1 “ ω)–1-1→ω))
4037, 38, 39mp2b 10 . . . . 5 ( 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎): 𝑎 ∈ ω (𝑅1𝑎)–1-1→ω ↔ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎): (𝑅1 “ ω)–1-1→ω)
4135, 40bitr4i 278 . . . 4 ( (rec(𝐺, ∅) “ ω): (𝑅1 “ ω)–1-1→ω ↔ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎): 𝑎 ∈ ω (𝑅1𝑎)–1-1→ω)
4230, 41mpbir 231 . . 3 (rec(𝐺, ∅) “ ω): (𝑅1 “ ω)–1-1→ω
43 rnuni 6101 . . . 4 ran (rec(𝐺, ∅) “ ω) = 𝑎 ∈ (rec(𝐺, ∅) “ ω)ran 𝑎
44 eliun 4948 . . . . . 6 (𝑏 𝑎 ∈ (rec(𝐺, ∅) “ ω)ran 𝑎 ↔ ∃𝑎 ∈ (rec(𝐺, ∅) “ ω)𝑏 ∈ ran 𝑎)
45 df-rex 3054 . . . . . 6 (∃𝑎 ∈ (rec(𝐺, ∅) “ ω)𝑏 ∈ ran 𝑎 ↔ ∃𝑎(𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎))
46 funfn 6516 . . . . . . . . . . . 12 (Fun rec(𝐺, ∅) ↔ rec(𝐺, ∅) Fn dom rec(𝐺, ∅))
4731, 46mpbi 230 . . . . . . . . . . 11 rec(𝐺, ∅) Fn dom rec(𝐺, ∅)
48 rdgdmlim 8346 . . . . . . . . . . . 12 Lim dom rec(𝐺, ∅)
49 limomss 7811 . . . . . . . . . . . 12 (Lim dom rec(𝐺, ∅) → ω ⊆ dom rec(𝐺, ∅))
5048, 49ax-mp 5 . . . . . . . . . . 11 ω ⊆ dom rec(𝐺, ∅)
51 fvelimab 6899 . . . . . . . . . . 11 ((rec(𝐺, ∅) Fn dom rec(𝐺, ∅) ∧ ω ⊆ dom rec(𝐺, ∅)) → (𝑎 ∈ (rec(𝐺, ∅) “ ω) ↔ ∃𝑐 ∈ ω (rec(𝐺, ∅)‘𝑐) = 𝑎))
5247, 50, 51mp2an 692 . . . . . . . . . 10 (𝑎 ∈ (rec(𝐺, ∅) “ ω) ↔ ∃𝑐 ∈ ω (rec(𝐺, ∅)‘𝑐) = 𝑎)
534, 5ackbij2lem2 10152 . . . . . . . . . . . . . 14 (𝑐 ∈ ω → (rec(𝐺, ∅)‘𝑐):(𝑅1𝑐)–1-1-onto→(card‘(𝑅1𝑐)))
54 f1ofo 6775 . . . . . . . . . . . . . 14 ((rec(𝐺, ∅)‘𝑐):(𝑅1𝑐)–1-1-onto→(card‘(𝑅1𝑐)) → (rec(𝐺, ∅)‘𝑐):(𝑅1𝑐)–onto→(card‘(𝑅1𝑐)))
55 forn 6743 . . . . . . . . . . . . . 14 ((rec(𝐺, ∅)‘𝑐):(𝑅1𝑐)–onto→(card‘(𝑅1𝑐)) → ran (rec(𝐺, ∅)‘𝑐) = (card‘(𝑅1𝑐)))
5653, 54, 553syl 18 . . . . . . . . . . . . 13 (𝑐 ∈ ω → ran (rec(𝐺, ∅)‘𝑐) = (card‘(𝑅1𝑐)))
57 r1fin 9688 . . . . . . . . . . . . . . 15 (𝑐 ∈ ω → (𝑅1𝑐) ∈ Fin)
58 ficardom 9876 . . . . . . . . . . . . . . 15 ((𝑅1𝑐) ∈ Fin → (card‘(𝑅1𝑐)) ∈ ω)
5957, 58syl 17 . . . . . . . . . . . . . 14 (𝑐 ∈ ω → (card‘(𝑅1𝑐)) ∈ ω)
60 ordelss 6327 . . . . . . . . . . . . . 14 ((Ord ω ∧ (card‘(𝑅1𝑐)) ∈ ω) → (card‘(𝑅1𝑐)) ⊆ ω)
619, 59, 60sylancr 587 . . . . . . . . . . . . 13 (𝑐 ∈ ω → (card‘(𝑅1𝑐)) ⊆ ω)
6256, 61eqsstrd 3972 . . . . . . . . . . . 12 (𝑐 ∈ ω → ran (rec(𝐺, ∅)‘𝑐) ⊆ ω)
63 rneq 5882 . . . . . . . . . . . . 13 ((rec(𝐺, ∅)‘𝑐) = 𝑎 → ran (rec(𝐺, ∅)‘𝑐) = ran 𝑎)
6463sseq1d 3969 . . . . . . . . . . . 12 ((rec(𝐺, ∅)‘𝑐) = 𝑎 → (ran (rec(𝐺, ∅)‘𝑐) ⊆ ω ↔ ran 𝑎 ⊆ ω))
6562, 64syl5ibcom 245 . . . . . . . . . . 11 (𝑐 ∈ ω → ((rec(𝐺, ∅)‘𝑐) = 𝑎 → ran 𝑎 ⊆ ω))
6665rexlimiv 3123 . . . . . . . . . 10 (∃𝑐 ∈ ω (rec(𝐺, ∅)‘𝑐) = 𝑎 → ran 𝑎 ⊆ ω)
6752, 66sylbi 217 . . . . . . . . 9 (𝑎 ∈ (rec(𝐺, ∅) “ ω) → ran 𝑎 ⊆ ω)
6867sselda 3937 . . . . . . . 8 ((𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎) → 𝑏 ∈ ω)
6968exlimiv 1930 . . . . . . 7 (∃𝑎(𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎) → 𝑏 ∈ ω)
70 peano2 7830 . . . . . . . . 9 (𝑏 ∈ ω → suc 𝑏 ∈ ω)
71 fnfvima 7173 . . . . . . . . 9 ((rec(𝐺, ∅) Fn dom rec(𝐺, ∅) ∧ ω ⊆ dom rec(𝐺, ∅) ∧ suc 𝑏 ∈ ω) → (rec(𝐺, ∅)‘suc 𝑏) ∈ (rec(𝐺, ∅) “ ω))
7247, 50, 70, 71mp3an12i 1467 . . . . . . . 8 (𝑏 ∈ ω → (rec(𝐺, ∅)‘suc 𝑏) ∈ (rec(𝐺, ∅) “ ω))
73 vex 3442 . . . . . . . . . 10 𝑏 ∈ V
74 cardnn 9878 . . . . . . . . . . . 12 (suc 𝑏 ∈ ω → (card‘suc 𝑏) = suc 𝑏)
75 fvex 6839 . . . . . . . . . . . . . 14 (𝑅1‘suc 𝑏) ∈ V
7636simpri 485 . . . . . . . . . . . . . . . . 17 Lim dom 𝑅1
77 limomss 7811 . . . . . . . . . . . . . . . . 17 (Lim dom 𝑅1 → ω ⊆ dom 𝑅1)
7876, 77ax-mp 5 . . . . . . . . . . . . . . . 16 ω ⊆ dom 𝑅1
7978sseli 3933 . . . . . . . . . . . . . . 15 (suc 𝑏 ∈ ω → suc 𝑏 ∈ dom 𝑅1)
80 onssr1 9746 . . . . . . . . . . . . . . 15 (suc 𝑏 ∈ dom 𝑅1 → suc 𝑏 ⊆ (𝑅1‘suc 𝑏))
8179, 80syl 17 . . . . . . . . . . . . . 14 (suc 𝑏 ∈ ω → suc 𝑏 ⊆ (𝑅1‘suc 𝑏))
82 ssdomg 8932 . . . . . . . . . . . . . 14 ((𝑅1‘suc 𝑏) ∈ V → (suc 𝑏 ⊆ (𝑅1‘suc 𝑏) → suc 𝑏 ≼ (𝑅1‘suc 𝑏)))
8375, 81, 82mpsyl 68 . . . . . . . . . . . . 13 (suc 𝑏 ∈ ω → suc 𝑏 ≼ (𝑅1‘suc 𝑏))
84 nnon 7812 . . . . . . . . . . . . . . 15 (suc 𝑏 ∈ ω → suc 𝑏 ∈ On)
85 onenon 9864 . . . . . . . . . . . . . . 15 (suc 𝑏 ∈ On → suc 𝑏 ∈ dom card)
8684, 85syl 17 . . . . . . . . . . . . . 14 (suc 𝑏 ∈ ω → suc 𝑏 ∈ dom card)
87 r1fin 9688 . . . . . . . . . . . . . . 15 (suc 𝑏 ∈ ω → (𝑅1‘suc 𝑏) ∈ Fin)
88 finnum 9863 . . . . . . . . . . . . . . 15 ((𝑅1‘suc 𝑏) ∈ Fin → (𝑅1‘suc 𝑏) ∈ dom card)
8987, 88syl 17 . . . . . . . . . . . . . 14 (suc 𝑏 ∈ ω → (𝑅1‘suc 𝑏) ∈ dom card)
90 carddom2 9892 . . . . . . . . . . . . . 14 ((suc 𝑏 ∈ dom card ∧ (𝑅1‘suc 𝑏) ∈ dom card) → ((card‘suc 𝑏) ⊆ (card‘(𝑅1‘suc 𝑏)) ↔ suc 𝑏 ≼ (𝑅1‘suc 𝑏)))
9186, 89, 90syl2anc 584 . . . . . . . . . . . . 13 (suc 𝑏 ∈ ω → ((card‘suc 𝑏) ⊆ (card‘(𝑅1‘suc 𝑏)) ↔ suc 𝑏 ≼ (𝑅1‘suc 𝑏)))
9283, 91mpbird 257 . . . . . . . . . . . 12 (suc 𝑏 ∈ ω → (card‘suc 𝑏) ⊆ (card‘(𝑅1‘suc 𝑏)))
9374, 92eqsstrrd 3973 . . . . . . . . . . 11 (suc 𝑏 ∈ ω → suc 𝑏 ⊆ (card‘(𝑅1‘suc 𝑏)))
9470, 93syl 17 . . . . . . . . . 10 (𝑏 ∈ ω → suc 𝑏 ⊆ (card‘(𝑅1‘suc 𝑏)))
95 sucssel 6408 . . . . . . . . . 10 (𝑏 ∈ V → (suc 𝑏 ⊆ (card‘(𝑅1‘suc 𝑏)) → 𝑏 ∈ (card‘(𝑅1‘suc 𝑏))))
9673, 94, 95mpsyl 68 . . . . . . . . 9 (𝑏 ∈ ω → 𝑏 ∈ (card‘(𝑅1‘suc 𝑏)))
974, 5ackbij2lem2 10152 . . . . . . . . . 10 (suc 𝑏 ∈ ω → (rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc 𝑏)))
98 f1ofo 6775 . . . . . . . . . 10 ((rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc 𝑏)) → (rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–onto→(card‘(𝑅1‘suc 𝑏)))
99 forn 6743 . . . . . . . . . 10 ((rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–onto→(card‘(𝑅1‘suc 𝑏)) → ran (rec(𝐺, ∅)‘suc 𝑏) = (card‘(𝑅1‘suc 𝑏)))
10070, 97, 98, 994syl 19 . . . . . . . . 9 (𝑏 ∈ ω → ran (rec(𝐺, ∅)‘suc 𝑏) = (card‘(𝑅1‘suc 𝑏)))
10196, 100eleqtrrd 2831 . . . . . . . 8 (𝑏 ∈ ω → 𝑏 ∈ ran (rec(𝐺, ∅)‘suc 𝑏))
102 fvex 6839 . . . . . . . . 9 (rec(𝐺, ∅)‘suc 𝑏) ∈ V
103 eleq1 2816 . . . . . . . . . 10 (𝑎 = (rec(𝐺, ∅)‘suc 𝑏) → (𝑎 ∈ (rec(𝐺, ∅) “ ω) ↔ (rec(𝐺, ∅)‘suc 𝑏) ∈ (rec(𝐺, ∅) “ ω)))
104 rneq 5882 . . . . . . . . . . 11 (𝑎 = (rec(𝐺, ∅)‘suc 𝑏) → ran 𝑎 = ran (rec(𝐺, ∅)‘suc 𝑏))
105104eleq2d 2814 . . . . . . . . . 10 (𝑎 = (rec(𝐺, ∅)‘suc 𝑏) → (𝑏 ∈ ran 𝑎𝑏 ∈ ran (rec(𝐺, ∅)‘suc 𝑏)))
106103, 105anbi12d 632 . . . . . . . . 9 (𝑎 = (rec(𝐺, ∅)‘suc 𝑏) → ((𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎) ↔ ((rec(𝐺, ∅)‘suc 𝑏) ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran (rec(𝐺, ∅)‘suc 𝑏))))
107102, 106spcev 3563 . . . . . . . 8 (((rec(𝐺, ∅)‘suc 𝑏) ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran (rec(𝐺, ∅)‘suc 𝑏)) → ∃𝑎(𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎))
10872, 101, 107syl2anc 584 . . . . . . 7 (𝑏 ∈ ω → ∃𝑎(𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎))
10969, 108impbii 209 . . . . . 6 (∃𝑎(𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎) ↔ 𝑏 ∈ ω)
11044, 45, 1093bitri 297 . . . . 5 (𝑏 𝑎 ∈ (rec(𝐺, ∅) “ ω)ran 𝑎𝑏 ∈ ω)
111110eqriv 2726 . . . 4 𝑎 ∈ (rec(𝐺, ∅) “ ω)ran 𝑎 = ω
11243, 111eqtri 2752 . . 3 ran (rec(𝐺, ∅) “ ω) = ω
113 dff1o5 6777 . . 3 ( (rec(𝐺, ∅) “ ω): (𝑅1 “ ω)–1-1-onto→ω ↔ ( (rec(𝐺, ∅) “ ω): (𝑅1 “ ω)–1-1→ω ∧ ran (rec(𝐺, ∅) “ ω) = ω))
11442, 112, 113mpbir2an 711 . 2 (rec(𝐺, ∅) “ ω): (𝑅1 “ ω)–1-1-onto→ω
115 ackbij.h . . 3 𝐻 = (rec(𝐺, ∅) “ ω)
116 f1oeq1 6756 . . 3 (𝐻 = (rec(𝐺, ∅) “ ω) → (𝐻: (𝑅1 “ ω)–1-1-onto→ω ↔ (rec(𝐺, ∅) “ ω): (𝑅1 “ ω)–1-1-onto→ω))
117115, 116ax-mp 5 . 2 (𝐻: (𝑅1 “ ω)–1-1-onto→ω ↔ (rec(𝐺, ∅) “ ω): (𝑅1 “ ω)–1-1-onto→ω)
118114, 117mpbir 231 1 𝐻: (𝑅1 “ ω)–1-1-onto→ω
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  cin 3904  wss 3905  c0 4286  𝒫 cpw 4553  {csn 4579   cuni 4861   ciun 4944   class class class wbr 5095  cmpt 5176   × cxp 5621  dom cdm 5623  ran crn 5624  cima 5626  Ord word 6310  Oncon0 6311  Lim wlim 6312  suc csuc 6313  Fun wfun 6480   Fn wfn 6481  1-1wf1 6483  ontowfo 6484  1-1-ontowf1o 6485  cfv 6486  ωcom 7806  reccrdg 8338  cdom 8877  Fincfn 8879  𝑅1cr1 9677  cardccrd 9850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-r1 9679  df-rank 9680  df-dju 9816  df-card 9854
This theorem is referenced by:  r1om  10156
  Copyright terms: Public domain W3C validator