Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ackbij2lem1 | Structured version Visualization version GIF version |
Description: Lemma for ackbij2 9930. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij2lem1 | ⊢ (𝐴 ∈ ω → 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7697 | . . . . . . 7 ⊢ Ord ω | |
2 | ordelss 6267 | . . . . . . 7 ⊢ ((Ord ω ∧ 𝐴 ∈ ω) → 𝐴 ⊆ ω) | |
3 | 1, 2 | mpan 686 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
4 | 3 | sspwd 4545 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝒫 𝐴 ⊆ 𝒫 ω) |
5 | 4 | sselda 3917 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → 𝑎 ∈ 𝒫 ω) |
6 | nnfi 8912 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
7 | elpwi 4539 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 𝐴 → 𝑎 ⊆ 𝐴) | |
8 | ssfi 8918 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑎 ⊆ 𝐴) → 𝑎 ∈ Fin) | |
9 | 6, 7, 8 | syl2an 595 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → 𝑎 ∈ Fin) |
10 | 5, 9 | elind 4124 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → 𝑎 ∈ (𝒫 ω ∩ Fin)) |
11 | 10 | ex 412 | . 2 ⊢ (𝐴 ∈ ω → (𝑎 ∈ 𝒫 𝐴 → 𝑎 ∈ (𝒫 ω ∩ Fin))) |
12 | 11 | ssrdv 3923 | 1 ⊢ (𝐴 ∈ ω → 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 Ord word 6250 ωcom 7687 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-en 8692 df-fin 8695 |
This theorem is referenced by: ackbij1b 9926 ackbij2lem2 9927 |
Copyright terms: Public domain | W3C validator |