MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij2lem1 Structured version   Visualization version   GIF version

Theorem ackbij2lem1 9973
Description: Lemma for ackbij2 9997. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
ackbij2lem1 (𝐴 ∈ ω → 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin))

Proof of Theorem ackbij2lem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ordom 7722 . . . . . . 7 Ord ω
2 ordelss 6284 . . . . . . 7 ((Ord ω ∧ 𝐴 ∈ ω) → 𝐴 ⊆ ω)
31, 2mpan 687 . . . . . 6 (𝐴 ∈ ω → 𝐴 ⊆ ω)
43sspwd 4550 . . . . 5 (𝐴 ∈ ω → 𝒫 𝐴 ⊆ 𝒫 ω)
54sselda 3922 . . . 4 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → 𝑎 ∈ 𝒫 ω)
6 nnfi 8948 . . . . 5 (𝐴 ∈ ω → 𝐴 ∈ Fin)
7 elpwi 4544 . . . . 5 (𝑎 ∈ 𝒫 𝐴𝑎𝐴)
8 ssfi 8954 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑎𝐴) → 𝑎 ∈ Fin)
96, 7, 8syl2an 596 . . . 4 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → 𝑎 ∈ Fin)
105, 9elind 4129 . . 3 ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → 𝑎 ∈ (𝒫 ω ∩ Fin))
1110ex 413 . 2 (𝐴 ∈ ω → (𝑎 ∈ 𝒫 𝐴𝑎 ∈ (𝒫 ω ∩ Fin)))
1211ssrdv 3928 1 (𝐴 ∈ ω → 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  cin 3887  wss 3888  𝒫 cpw 4535  Ord word 6267  ωcom 7712  Fincfn 8731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5225  ax-nul 5232  ax-pr 5354  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-br 5077  df-opab 5139  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-om 7713  df-1o 8295  df-en 8732  df-fin 8735
This theorem is referenced by:  ackbij1b  9993  ackbij2lem2  9994
  Copyright terms: Public domain W3C validator