Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ackbij2lem1 | Structured version Visualization version GIF version |
Description: Lemma for ackbij2 9997. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij2lem1 | ⊢ (𝐴 ∈ ω → 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7722 | . . . . . . 7 ⊢ Ord ω | |
2 | ordelss 6284 | . . . . . . 7 ⊢ ((Ord ω ∧ 𝐴 ∈ ω) → 𝐴 ⊆ ω) | |
3 | 1, 2 | mpan 687 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
4 | 3 | sspwd 4550 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝒫 𝐴 ⊆ 𝒫 ω) |
5 | 4 | sselda 3922 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → 𝑎 ∈ 𝒫 ω) |
6 | nnfi 8948 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
7 | elpwi 4544 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 𝐴 → 𝑎 ⊆ 𝐴) | |
8 | ssfi 8954 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑎 ⊆ 𝐴) → 𝑎 ∈ Fin) | |
9 | 6, 7, 8 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → 𝑎 ∈ Fin) |
10 | 5, 9 | elind 4129 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → 𝑎 ∈ (𝒫 ω ∩ Fin)) |
11 | 10 | ex 413 | . 2 ⊢ (𝐴 ∈ ω → (𝑎 ∈ 𝒫 𝐴 → 𝑎 ∈ (𝒫 ω ∩ Fin))) |
12 | 11 | ssrdv 3928 | 1 ⊢ (𝐴 ∈ ω → 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∩ cin 3887 ⊆ wss 3888 𝒫 cpw 4535 Ord word 6267 ωcom 7712 Fincfn 8731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pr 5354 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5077 df-opab 5139 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-om 7713 df-1o 8295 df-en 8732 df-fin 8735 |
This theorem is referenced by: ackbij1b 9993 ackbij2lem2 9994 |
Copyright terms: Public domain | W3C validator |