![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij2lem1 | Structured version Visualization version GIF version |
Description: Lemma for ackbij2 9400. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij2lem1 | ⊢ (𝐴 ∈ ω → 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7352 | . . . . . . 7 ⊢ Ord ω | |
2 | ordelss 5992 | . . . . . . 7 ⊢ ((Ord ω ∧ 𝐴 ∈ ω) → 𝐴 ⊆ ω) | |
3 | 1, 2 | mpan 680 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
4 | sspwb 5149 | . . . . . 6 ⊢ (𝐴 ⊆ ω ↔ 𝒫 𝐴 ⊆ 𝒫 ω) | |
5 | 3, 4 | sylib 210 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝒫 𝐴 ⊆ 𝒫 ω) |
6 | 5 | sselda 3821 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → 𝑎 ∈ 𝒫 ω) |
7 | nnfi 8441 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
8 | elpwi 4389 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 𝐴 → 𝑎 ⊆ 𝐴) | |
9 | ssfi 8468 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑎 ⊆ 𝐴) → 𝑎 ∈ Fin) | |
10 | 7, 8, 9 | syl2an 589 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → 𝑎 ∈ Fin) |
11 | 6, 10 | elind 4021 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → 𝑎 ∈ (𝒫 ω ∩ Fin)) |
12 | 11 | ex 403 | . 2 ⊢ (𝐴 ∈ ω → (𝑎 ∈ 𝒫 𝐴 → 𝑎 ∈ (𝒫 ω ∩ Fin))) |
13 | 12 | ssrdv 3827 | 1 ⊢ (𝐴 ∈ ω → 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2107 ∩ cin 3791 ⊆ wss 3792 𝒫 cpw 4379 Ord word 5975 ωcom 7343 Fincfn 8241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-om 7344 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 |
This theorem is referenced by: ackbij1b 9396 ackbij2lem2 9397 |
Copyright terms: Public domain | W3C validator |