![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij2lem1 | Structured version Visualization version GIF version |
Description: Lemma for ackbij2 10273. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij2lem1 | ⊢ (𝐴 ∈ ω → 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7881 | . . . . . . 7 ⊢ Ord ω | |
2 | ordelss 6387 | . . . . . . 7 ⊢ ((Ord ω ∧ 𝐴 ∈ ω) → 𝐴 ⊆ ω) | |
3 | 1, 2 | mpan 688 | . . . . . 6 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
4 | 3 | sspwd 4617 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝒫 𝐴 ⊆ 𝒫 ω) |
5 | 4 | sselda 3976 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → 𝑎 ∈ 𝒫 ω) |
6 | nnfi 9195 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
7 | elpwi 4611 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 𝐴 → 𝑎 ⊆ 𝐴) | |
8 | ssfi 9201 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑎 ⊆ 𝐴) → 𝑎 ∈ Fin) | |
9 | 6, 7, 8 | syl2an 594 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → 𝑎 ∈ Fin) |
10 | 5, 9 | elind 4192 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴) → 𝑎 ∈ (𝒫 ω ∩ Fin)) |
11 | 10 | ex 411 | . 2 ⊢ (𝐴 ∈ ω → (𝑎 ∈ 𝒫 𝐴 → 𝑎 ∈ (𝒫 ω ∩ Fin))) |
12 | 11 | ssrdv 3982 | 1 ⊢ (𝐴 ∈ ω → 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ∩ cin 3943 ⊆ wss 3944 𝒫 cpw 4604 Ord word 6370 ωcom 7871 Fincfn 8964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-om 7872 df-1o 8487 df-en 8965 df-fin 8968 |
This theorem is referenced by: ackbij1b 10269 ackbij2lem2 10270 |
Copyright terms: Public domain | W3C validator |