![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij1lem2 | Structured version Visualization version GIF version |
Description: Lemma for ackbij2 10187. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij1lem2 | ⊢ (𝐴 ∈ 𝐵 → (𝐵 ∩ suc 𝐴) = ({𝐴} ∪ (𝐵 ∩ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6327 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | 1 | ineq2i 4173 | . . 3 ⊢ (𝐵 ∩ suc 𝐴) = (𝐵 ∩ (𝐴 ∪ {𝐴})) |
3 | indi 4237 | . . 3 ⊢ (𝐵 ∩ (𝐴 ∪ {𝐴})) = ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) | |
4 | uncom 4117 | . . 3 ⊢ ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) = ((𝐵 ∩ {𝐴}) ∪ (𝐵 ∩ 𝐴)) | |
5 | 2, 3, 4 | 3eqtri 2765 | . 2 ⊢ (𝐵 ∩ suc 𝐴) = ((𝐵 ∩ {𝐴}) ∪ (𝐵 ∩ 𝐴)) |
6 | snssi 4772 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | |
7 | sseqin2 4179 | . . . 4 ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐵 ∩ {𝐴}) = {𝐴}) | |
8 | 6, 7 | sylib 217 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐵 ∩ {𝐴}) = {𝐴}) |
9 | 8 | uneq1d 4126 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐵 ∩ {𝐴}) ∪ (𝐵 ∩ 𝐴)) = ({𝐴} ∪ (𝐵 ∩ 𝐴))) |
10 | 5, 9 | eqtrid 2785 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐵 ∩ suc 𝐴) = ({𝐴} ∪ (𝐵 ∩ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∪ cun 3912 ∩ cin 3913 ⊆ wss 3914 {csn 4590 suc csuc 6323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3407 df-v 3449 df-un 3919 df-in 3921 df-ss 3931 df-sn 4591 df-suc 6327 |
This theorem is referenced by: ackbij1lem15 10178 ackbij1lem16 10179 |
Copyright terms: Public domain | W3C validator |