|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ackbij1lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij2 10282. (Contributed by Stefan O'Rear, 18-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| ackbij1lem2 | ⊢ (𝐴 ∈ 𝐵 → (𝐵 ∩ suc 𝐴) = ({𝐴} ∪ (𝐵 ∩ 𝐴))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-suc 6390 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 2 | 1 | ineq2i 4217 | . . 3 ⊢ (𝐵 ∩ suc 𝐴) = (𝐵 ∩ (𝐴 ∪ {𝐴})) | 
| 3 | indi 4284 | . . 3 ⊢ (𝐵 ∩ (𝐴 ∪ {𝐴})) = ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) | |
| 4 | uncom 4158 | . . 3 ⊢ ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) = ((𝐵 ∩ {𝐴}) ∪ (𝐵 ∩ 𝐴)) | |
| 5 | 2, 3, 4 | 3eqtri 2769 | . 2 ⊢ (𝐵 ∩ suc 𝐴) = ((𝐵 ∩ {𝐴}) ∪ (𝐵 ∩ 𝐴)) | 
| 6 | snssi 4808 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | |
| 7 | sseqin2 4223 | . . . 4 ⊢ ({𝐴} ⊆ 𝐵 ↔ (𝐵 ∩ {𝐴}) = {𝐴}) | |
| 8 | 6, 7 | sylib 218 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐵 ∩ {𝐴}) = {𝐴}) | 
| 9 | 8 | uneq1d 4167 | . 2 ⊢ (𝐴 ∈ 𝐵 → ((𝐵 ∩ {𝐴}) ∪ (𝐵 ∩ 𝐴)) = ({𝐴} ∪ (𝐵 ∩ 𝐴))) | 
| 10 | 5, 9 | eqtrid 2789 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐵 ∩ suc 𝐴) = ({𝐴} ∪ (𝐵 ∩ 𝐴))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∪ cun 3949 ∩ cin 3950 ⊆ wss 3951 {csn 4626 suc csuc 6386 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-un 3956 df-in 3958 df-ss 3968 df-sn 4627 df-suc 6390 | 
| This theorem is referenced by: ackbij1lem15 10273 ackbij1lem16 10274 | 
| Copyright terms: Public domain | W3C validator |