MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem2 Structured version   Visualization version   GIF version

Theorem ackbij1lem2 10215
Description: Lemma for ackbij2 10237. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
ackbij1lem2 (𝐴𝐵 → (𝐵 ∩ suc 𝐴) = ({𝐴} ∪ (𝐵𝐴)))

Proof of Theorem ackbij1lem2
StepHypRef Expression
1 df-suc 6370 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
21ineq2i 4209 . . 3 (𝐵 ∩ suc 𝐴) = (𝐵 ∩ (𝐴 ∪ {𝐴}))
3 indi 4273 . . 3 (𝐵 ∩ (𝐴 ∪ {𝐴})) = ((𝐵𝐴) ∪ (𝐵 ∩ {𝐴}))
4 uncom 4153 . . 3 ((𝐵𝐴) ∪ (𝐵 ∩ {𝐴})) = ((𝐵 ∩ {𝐴}) ∪ (𝐵𝐴))
52, 3, 43eqtri 2764 . 2 (𝐵 ∩ suc 𝐴) = ((𝐵 ∩ {𝐴}) ∪ (𝐵𝐴))
6 snssi 4811 . . . 4 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
7 sseqin2 4215 . . . 4 ({𝐴} ⊆ 𝐵 ↔ (𝐵 ∩ {𝐴}) = {𝐴})
86, 7sylib 217 . . 3 (𝐴𝐵 → (𝐵 ∩ {𝐴}) = {𝐴})
98uneq1d 4162 . 2 (𝐴𝐵 → ((𝐵 ∩ {𝐴}) ∪ (𝐵𝐴)) = ({𝐴} ∪ (𝐵𝐴)))
105, 9eqtrid 2784 1 (𝐴𝐵 → (𝐵 ∩ suc 𝐴) = ({𝐴} ∪ (𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cun 3946  cin 3947  wss 3948  {csn 4628  suc csuc 6366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-un 3953  df-in 3955  df-ss 3965  df-sn 4629  df-suc 6370
This theorem is referenced by:  ackbij1lem15  10228  ackbij1lem16  10229
  Copyright terms: Public domain W3C validator