MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem2 Structured version   Visualization version   GIF version

Theorem ackbij1lem2 10114
Description: Lemma for ackbij2 10136. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
ackbij1lem2 (𝐴𝐵 → (𝐵 ∩ suc 𝐴) = ({𝐴} ∪ (𝐵𝐴)))

Proof of Theorem ackbij1lem2
StepHypRef Expression
1 df-suc 6313 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
21ineq2i 4168 . . 3 (𝐵 ∩ suc 𝐴) = (𝐵 ∩ (𝐴 ∪ {𝐴}))
3 indi 4235 . . 3 (𝐵 ∩ (𝐴 ∪ {𝐴})) = ((𝐵𝐴) ∪ (𝐵 ∩ {𝐴}))
4 uncom 4109 . . 3 ((𝐵𝐴) ∪ (𝐵 ∩ {𝐴})) = ((𝐵 ∩ {𝐴}) ∪ (𝐵𝐴))
52, 3, 43eqtri 2756 . 2 (𝐵 ∩ suc 𝐴) = ((𝐵 ∩ {𝐴}) ∪ (𝐵𝐴))
6 snssi 4759 . . . 4 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
7 sseqin2 4174 . . . 4 ({𝐴} ⊆ 𝐵 ↔ (𝐵 ∩ {𝐴}) = {𝐴})
86, 7sylib 218 . . 3 (𝐴𝐵 → (𝐵 ∩ {𝐴}) = {𝐴})
98uneq1d 4118 . 2 (𝐴𝐵 → ((𝐵 ∩ {𝐴}) ∪ (𝐵𝐴)) = ({𝐴} ∪ (𝐵𝐴)))
105, 9eqtrid 2776 1 (𝐴𝐵 → (𝐵 ∩ suc 𝐴) = ({𝐴} ∪ (𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cun 3901  cin 3902  wss 3903  {csn 4577  suc csuc 6309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-un 3908  df-in 3910  df-ss 3920  df-sn 4578  df-suc 6313
This theorem is referenced by:  ackbij1lem15  10127  ackbij1lem16  10128
  Copyright terms: Public domain W3C validator