MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem16 Structured version   Visualization version   GIF version

Theorem ackbij1lem16 9312
Description: Lemma for ackbij1 9315. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem16 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹𝐴) = (𝐹𝐵) → 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ackbij1lem16
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3994 . . . . . . . . 9 (𝒫 ω ∩ Fin) ⊆ 𝒫 ω
21sseli 3759 . . . . . . . 8 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω)
32elpwid 4329 . . . . . . 7 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ⊆ ω)
43adantr 472 . . . . . 6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → 𝐴 ⊆ ω)
51sseli 3759 . . . . . . . 8 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ 𝒫 ω)
65elpwid 4329 . . . . . . 7 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ⊆ ω)
76adantl 473 . . . . . 6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ⊆ ω)
84, 7unssd 3953 . . . . 5 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ⊆ ω)
9 inss2 3995 . . . . . . 7 (𝒫 ω ∩ Fin) ⊆ Fin
109sseli 3759 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin)
119sseli 3759 . . . . . 6 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ Fin)
12 unfi 8436 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
1310, 11, 12syl2an 589 . . . . 5 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ Fin)
14 nnunifi 8420 . . . . 5 (((𝐴𝐵) ⊆ ω ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) ∈ ω)
158, 13, 14syl2anc 579 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ ω)
16 peano2 7286 . . . 4 ( (𝐴𝐵) ∈ ω → suc (𝐴𝐵) ∈ ω)
1715, 16syl 17 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → suc (𝐴𝐵) ∈ ω)
18 ineq2 3972 . . . . . . . 8 (𝑎 = ∅ → (𝐴𝑎) = (𝐴 ∩ ∅))
1918fveq2d 6381 . . . . . . 7 (𝑎 = ∅ → (𝐹‘(𝐴𝑎)) = (𝐹‘(𝐴 ∩ ∅)))
20 ineq2 3972 . . . . . . . 8 (𝑎 = ∅ → (𝐵𝑎) = (𝐵 ∩ ∅))
2120fveq2d 6381 . . . . . . 7 (𝑎 = ∅ → (𝐹‘(𝐵𝑎)) = (𝐹‘(𝐵 ∩ ∅)))
2219, 21eqeq12d 2780 . . . . . 6 (𝑎 = ∅ → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) ↔ (𝐹‘(𝐴 ∩ ∅)) = (𝐹‘(𝐵 ∩ ∅))))
2318, 20eqeq12d 2780 . . . . . 6 (𝑎 = ∅ → ((𝐴𝑎) = (𝐵𝑎) ↔ (𝐴 ∩ ∅) = (𝐵 ∩ ∅)))
2422, 23imbi12d 335 . . . . 5 (𝑎 = ∅ → (((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎)) ↔ ((𝐹‘(𝐴 ∩ ∅)) = (𝐹‘(𝐵 ∩ ∅)) → (𝐴 ∩ ∅) = (𝐵 ∩ ∅))))
2524imbi2d 331 . . . 4 (𝑎 = ∅ → (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎))) ↔ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ ∅)) = (𝐹‘(𝐵 ∩ ∅)) → (𝐴 ∩ ∅) = (𝐵 ∩ ∅)))))
26 ineq2 3972 . . . . . . . 8 (𝑎 = 𝑏 → (𝐴𝑎) = (𝐴𝑏))
2726fveq2d 6381 . . . . . . 7 (𝑎 = 𝑏 → (𝐹‘(𝐴𝑎)) = (𝐹‘(𝐴𝑏)))
28 ineq2 3972 . . . . . . . 8 (𝑎 = 𝑏 → (𝐵𝑎) = (𝐵𝑏))
2928fveq2d 6381 . . . . . . 7 (𝑎 = 𝑏 → (𝐹‘(𝐵𝑎)) = (𝐹‘(𝐵𝑏)))
3027, 29eqeq12d 2780 . . . . . 6 (𝑎 = 𝑏 → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) ↔ (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
3126, 28eqeq12d 2780 . . . . . 6 (𝑎 = 𝑏 → ((𝐴𝑎) = (𝐵𝑎) ↔ (𝐴𝑏) = (𝐵𝑏)))
3230, 31imbi12d 335 . . . . 5 (𝑎 = 𝑏 → (((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎)) ↔ ((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏))))
3332imbi2d 331 . . . 4 (𝑎 = 𝑏 → (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎))) ↔ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)))))
34 ineq2 3972 . . . . . . . 8 (𝑎 = suc 𝑏 → (𝐴𝑎) = (𝐴 ∩ suc 𝑏))
3534fveq2d 6381 . . . . . . 7 (𝑎 = suc 𝑏 → (𝐹‘(𝐴𝑎)) = (𝐹‘(𝐴 ∩ suc 𝑏)))
36 ineq2 3972 . . . . . . . 8 (𝑎 = suc 𝑏 → (𝐵𝑎) = (𝐵 ∩ suc 𝑏))
3736fveq2d 6381 . . . . . . 7 (𝑎 = suc 𝑏 → (𝐹‘(𝐵𝑎)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
3835, 37eqeq12d 2780 . . . . . 6 (𝑎 = suc 𝑏 → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) ↔ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))))
3934, 36eqeq12d 2780 . . . . . 6 (𝑎 = suc 𝑏 → ((𝐴𝑎) = (𝐵𝑎) ↔ (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
4038, 39imbi12d 335 . . . . 5 (𝑎 = suc 𝑏 → (((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎)) ↔ ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏))))
4140imbi2d 331 . . . 4 (𝑎 = suc 𝑏 → (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎))) ↔ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
42 ineq2 3972 . . . . . . . 8 (𝑎 = suc (𝐴𝐵) → (𝐴𝑎) = (𝐴 ∩ suc (𝐴𝐵)))
4342fveq2d 6381 . . . . . . 7 (𝑎 = suc (𝐴𝐵) → (𝐹‘(𝐴𝑎)) = (𝐹‘(𝐴 ∩ suc (𝐴𝐵))))
44 ineq2 3972 . . . . . . . 8 (𝑎 = suc (𝐴𝐵) → (𝐵𝑎) = (𝐵 ∩ suc (𝐴𝐵)))
4544fveq2d 6381 . . . . . . 7 (𝑎 = suc (𝐴𝐵) → (𝐹‘(𝐵𝑎)) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵))))
4643, 45eqeq12d 2780 . . . . . 6 (𝑎 = suc (𝐴𝐵) → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) ↔ (𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵)))))
4742, 44eqeq12d 2780 . . . . . 6 (𝑎 = suc (𝐴𝐵) → ((𝐴𝑎) = (𝐵𝑎) ↔ (𝐴 ∩ suc (𝐴𝐵)) = (𝐵 ∩ suc (𝐴𝐵))))
4846, 47imbi12d 335 . . . . 5 (𝑎 = suc (𝐴𝐵) → (((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎)) ↔ ((𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵))) → (𝐴 ∩ suc (𝐴𝐵)) = (𝐵 ∩ suc (𝐴𝐵)))))
4948imbi2d 331 . . . 4 (𝑎 = suc (𝐴𝐵) → (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎))) ↔ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵))) → (𝐴 ∩ suc (𝐴𝐵)) = (𝐵 ∩ suc (𝐴𝐵))))))
50 in0 4132 . . . . . 6 (𝐴 ∩ ∅) = ∅
51 in0 4132 . . . . . 6 (𝐵 ∩ ∅) = ∅
5250, 51eqtr4i 2790 . . . . 5 (𝐴 ∩ ∅) = (𝐵 ∩ ∅)
53522a1i 12 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ ∅)) = (𝐹‘(𝐵 ∩ ∅)) → (𝐴 ∩ ∅) = (𝐵 ∩ ∅)))
54 simp13 1262 . . . . . . . . . . . . 13 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
55 3simpa 1178 . . . . . . . . . . . . . 14 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))))
56 ackbij1lem2 9298 . . . . . . . . . . . . . . . . 17 (𝑏𝐴 → (𝐴 ∩ suc 𝑏) = ({𝑏} ∪ (𝐴𝑏)))
5756fveq2d 6381 . . . . . . . . . . . . . . . 16 (𝑏𝐴 → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘({𝑏} ∪ (𝐴𝑏))))
58573ad2ant2 1164 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘({𝑏} ∪ (𝐴𝑏))))
59 ackbij1lem4 9300 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ω → {𝑏} ∈ (𝒫 ω ∩ Fin))
6059adantr 472 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → {𝑏} ∈ (𝒫 ω ∩ Fin))
61 simprl 787 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → 𝐴 ∈ (𝒫 ω ∩ Fin))
62 inss1 3994 . . . . . . . . . . . . . . . . . 18 (𝐴𝑏) ⊆ 𝐴
63 ackbij.f . . . . . . . . . . . . . . . . . . 19 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
6463ackbij1lem11 9307 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝑏) ⊆ 𝐴) → (𝐴𝑏) ∈ (𝒫 ω ∩ Fin))
6561, 62, 64sylancl 580 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐴𝑏) ∈ (𝒫 ω ∩ Fin))
66 incom 3969 . . . . . . . . . . . . . . . . . 18 ({𝑏} ∩ (𝐴𝑏)) = ((𝐴𝑏) ∩ {𝑏})
67 inss2 3995 . . . . . . . . . . . . . . . . . . 19 (𝐴𝑏) ⊆ 𝑏
68 nnord 7273 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ∈ ω → Ord 𝑏)
69 orddisj 5948 . . . . . . . . . . . . . . . . . . . . 21 (Ord 𝑏 → (𝑏 ∩ {𝑏}) = ∅)
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ω → (𝑏 ∩ {𝑏}) = ∅)
7170adantr 472 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝑏 ∩ {𝑏}) = ∅)
72 ssdisj 4190 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑏) ⊆ 𝑏 ∧ (𝑏 ∩ {𝑏}) = ∅) → ((𝐴𝑏) ∩ {𝑏}) = ∅)
7367, 71, 72sylancr 581 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → ((𝐴𝑏) ∩ {𝑏}) = ∅)
7466, 73syl5eq 2811 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → ({𝑏} ∩ (𝐴𝑏)) = ∅)
7563ackbij1lem9 9305 . . . . . . . . . . . . . . . . 17 (({𝑏} ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝑏) ∈ (𝒫 ω ∩ Fin) ∧ ({𝑏} ∩ (𝐴𝑏)) = ∅) → (𝐹‘({𝑏} ∪ (𝐴𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))))
7660, 65, 74, 75syl3anc 1490 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐹‘({𝑏} ∪ (𝐴𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))))
77763ad2ant1 1163 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘({𝑏} ∪ (𝐴𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))))
7858, 77eqtrd 2799 . . . . . . . . . . . . . 14 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))))
7955, 78syl3an1 1202 . . . . . . . . . . . . 13 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))))
80 ackbij1lem2 9298 . . . . . . . . . . . . . . . . 17 (𝑏𝐵 → (𝐵 ∩ suc 𝑏) = ({𝑏} ∪ (𝐵𝑏)))
8180fveq2d 6381 . . . . . . . . . . . . . . . 16 (𝑏𝐵 → (𝐹‘(𝐵 ∩ suc 𝑏)) = (𝐹‘({𝑏} ∪ (𝐵𝑏))))
82813ad2ant3 1165 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐵 ∩ suc 𝑏)) = (𝐹‘({𝑏} ∪ (𝐵𝑏))))
83 simprr 789 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → 𝐵 ∈ (𝒫 ω ∩ Fin))
84 inss1 3994 . . . . . . . . . . . . . . . . . 18 (𝐵𝑏) ⊆ 𝐵
8563ackbij1lem11 9307 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵𝑏) ⊆ 𝐵) → (𝐵𝑏) ∈ (𝒫 ω ∩ Fin))
8683, 84, 85sylancl 580 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐵𝑏) ∈ (𝒫 ω ∩ Fin))
87 incom 3969 . . . . . . . . . . . . . . . . . 18 ({𝑏} ∩ (𝐵𝑏)) = ((𝐵𝑏) ∩ {𝑏})
88 inss2 3995 . . . . . . . . . . . . . . . . . . 19 (𝐵𝑏) ⊆ 𝑏
89 ssdisj 4190 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝑏) ⊆ 𝑏 ∧ (𝑏 ∩ {𝑏}) = ∅) → ((𝐵𝑏) ∩ {𝑏}) = ∅)
9088, 71, 89sylancr 581 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → ((𝐵𝑏) ∩ {𝑏}) = ∅)
9187, 90syl5eq 2811 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → ({𝑏} ∩ (𝐵𝑏)) = ∅)
9263ackbij1lem9 9305 . . . . . . . . . . . . . . . . 17 (({𝑏} ∈ (𝒫 ω ∩ Fin) ∧ (𝐵𝑏) ∈ (𝒫 ω ∩ Fin) ∧ ({𝑏} ∩ (𝐵𝑏)) = ∅) → (𝐹‘({𝑏} ∪ (𝐵𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))))
9360, 86, 91, 92syl3anc 1490 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐹‘({𝑏} ∪ (𝐵𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))))
94933ad2ant1 1163 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘({𝑏} ∪ (𝐵𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))))
9582, 94eqtrd 2799 . . . . . . . . . . . . . 14 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐵 ∩ suc 𝑏)) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))))
9655, 95syl3an1 1202 . . . . . . . . . . . . 13 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐵 ∩ suc 𝑏)) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))))
9754, 79, 963eqtr3d 2807 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))))
9863ackbij1lem10 9306 . . . . . . . . . . . . . . . . 17 𝐹:(𝒫 ω ∩ Fin)⟶ω
9998ffvelrni 6550 . . . . . . . . . . . . . . . 16 ({𝑏} ∈ (𝒫 ω ∩ Fin) → (𝐹‘{𝑏}) ∈ ω)
10060, 99syl 17 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐹‘{𝑏}) ∈ ω)
10198ffvelrni 6550 . . . . . . . . . . . . . . . 16 ((𝐴𝑏) ∈ (𝒫 ω ∩ Fin) → (𝐹‘(𝐴𝑏)) ∈ ω)
10265, 101syl 17 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐹‘(𝐴𝑏)) ∈ ω)
10398ffvelrni 6550 . . . . . . . . . . . . . . . 16 ((𝐵𝑏) ∈ (𝒫 ω ∩ Fin) → (𝐹‘(𝐵𝑏)) ∈ ω)
10486, 103syl 17 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐹‘(𝐵𝑏)) ∈ ω)
105 nnacan 7915 . . . . . . . . . . . . . . 15 (((𝐹‘{𝑏}) ∈ ω ∧ (𝐹‘(𝐴𝑏)) ∈ ω ∧ (𝐹‘(𝐵𝑏)) ∈ ω) → (((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))) ↔ (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
106100, 102, 104, 105syl3anc 1490 . . . . . . . . . . . . . 14 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))) ↔ (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
1071063adant3 1162 . . . . . . . . . . . . 13 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))) ↔ (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
1081073ad2ant1 1163 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → (((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐴𝑏))) = ((𝐹‘{𝑏}) +𝑜 (𝐹‘(𝐵𝑏))) ↔ (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
10997, 108mpbid 223 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)))
110 uneq2 3925 . . . . . . . . . . . . . . 15 ((𝐴𝑏) = (𝐵𝑏) → ({𝑏} ∪ (𝐴𝑏)) = ({𝑏} ∪ (𝐵𝑏)))
111110adantl 473 . . . . . . . . . . . . . 14 (((𝑏𝐴𝑏𝐵) ∧ (𝐴𝑏) = (𝐵𝑏)) → ({𝑏} ∪ (𝐴𝑏)) = ({𝑏} ∪ (𝐵𝑏)))
11256ad2antrr 717 . . . . . . . . . . . . . 14 (((𝑏𝐴𝑏𝐵) ∧ (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = ({𝑏} ∪ (𝐴𝑏)))
11380ad2antlr 718 . . . . . . . . . . . . . 14 (((𝑏𝐴𝑏𝐵) ∧ (𝐴𝑏) = (𝐵𝑏)) → (𝐵 ∩ suc 𝑏) = ({𝑏} ∪ (𝐵𝑏)))
114111, 112, 1133eqtr4d 2809 . . . . . . . . . . . . 13 (((𝑏𝐴𝑏𝐵) ∧ (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏))
115114ex 401 . . . . . . . . . . . 12 ((𝑏𝐴𝑏𝐵) → ((𝐴𝑏) = (𝐵𝑏) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1161153adant1 1160 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → ((𝐴𝑏) = (𝐵𝑏) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
117109, 116embantd 59 . . . . . . . . . 10 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1181173exp 1148 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (𝑏𝐴 → (𝑏𝐵 → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
119 simp13 1262 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
120119eqcomd 2771 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐵 ∩ suc 𝑏)) = (𝐹‘(𝐴 ∩ suc 𝑏)))
121 simp12r 1386 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → 𝐵 ∈ (𝒫 ω ∩ Fin))
122 simp12l 1385 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → 𝐴 ∈ (𝒫 ω ∩ Fin))
123 simp11 1260 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → 𝑏 ∈ ω)
124 simp3 1168 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → 𝑏𝐵)
125 simp2 1167 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → ¬ 𝑏𝐴)
12663ackbij1lem15 9311 . . . . . . . . . . . 12 (((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑏 ∈ ω ∧ 𝑏𝐵 ∧ ¬ 𝑏𝐴)) → ¬ (𝐹‘(𝐵 ∩ suc 𝑏)) = (𝐹‘(𝐴 ∩ suc 𝑏)))
127121, 122, 123, 124, 125, 126syl23anc 1496 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → ¬ (𝐹‘(𝐵 ∩ suc 𝑏)) = (𝐹‘(𝐴 ∩ suc 𝑏)))
128120, 127pm2.21dd 186 . . . . . . . . . 10 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1291283exp 1148 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (¬ 𝑏𝐴 → (𝑏𝐵 → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
130118, 129pm2.61d 171 . . . . . . . 8 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (𝑏𝐵 → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏))))
131 simp13 1262 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
132 simp12l 1385 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → 𝐴 ∈ (𝒫 ω ∩ Fin))
133 simp12r 1386 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → 𝐵 ∈ (𝒫 ω ∩ Fin))
134 simp11 1260 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → 𝑏 ∈ ω)
135 simp2 1167 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → 𝑏𝐴)
136 simp3 1168 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ¬ 𝑏𝐵)
13763ackbij1lem15 9311 . . . . . . . . . . . 12 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑏 ∈ ω ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵)) → ¬ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
138132, 133, 134, 135, 136, 137syl23anc 1496 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ¬ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
139131, 138pm2.21dd 186 . . . . . . . . . 10 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1401393exp 1148 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (𝑏𝐴 → (¬ 𝑏𝐵 → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
141 simp13 1262 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
142 ackbij1lem1 9297 . . . . . . . . . . . . . . . . 17 𝑏𝐴 → (𝐴 ∩ suc 𝑏) = (𝐴𝑏))
143142adantr 472 . . . . . . . . . . . . . . . 16 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐴 ∩ suc 𝑏) = (𝐴𝑏))
144143fveq2d 6381 . . . . . . . . . . . . . . 15 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐴𝑏)))
145 ackbij1lem1 9297 . . . . . . . . . . . . . . . . 17 𝑏𝐵 → (𝐵 ∩ suc 𝑏) = (𝐵𝑏))
146145adantl 473 . . . . . . . . . . . . . . . 16 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐵 ∩ suc 𝑏) = (𝐵𝑏))
147146fveq2d 6381 . . . . . . . . . . . . . . 15 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐹‘(𝐵 ∩ suc 𝑏)) = (𝐹‘(𝐵𝑏)))
148144, 147eqeq12d 2780 . . . . . . . . . . . . . 14 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) ↔ (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
149148biimpd 220 . . . . . . . . . . . . 13 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
1501493adant1 1160 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
151141, 150mpd 15 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)))
152143, 146eqeq12d 2780 . . . . . . . . . . . . 13 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ((𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏) ↔ (𝐴𝑏) = (𝐵𝑏)))
153152biimprd 239 . . . . . . . . . . . 12 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ((𝐴𝑏) = (𝐵𝑏) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1541533adant1 1160 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ((𝐴𝑏) = (𝐵𝑏) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
155151, 154embantd 59 . . . . . . . . . 10 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1561553exp 1148 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (¬ 𝑏𝐴 → (¬ 𝑏𝐵 → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
157140, 156pm2.61d 171 . . . . . . . 8 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (¬ 𝑏𝐵 → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏))))
158130, 157pm2.61d 171 . . . . . . 7 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1591583exp 1148 . . . . . 6 (𝑏 ∈ ω → ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
160159com34 91 . . . . 5 (𝑏 ∈ ω → ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
161160a2d 29 . . . 4 (𝑏 ∈ ω → (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏))) → ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
16225, 33, 41, 49, 53, 161finds 7292 . . 3 (suc (𝐴𝐵) ∈ ω → ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵))) → (𝐴 ∩ suc (𝐴𝐵)) = (𝐵 ∩ suc (𝐴𝐵)))))
16317, 162mpcom 38 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵))) → (𝐴 ∩ suc (𝐴𝐵)) = (𝐵 ∩ suc (𝐴𝐵))))
164 omsson 7269 . . . . . . . 8 ω ⊆ On
1658, 164syl6ss 3775 . . . . . . 7 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ⊆ On)
166 onsucuni 7228 . . . . . . 7 ((𝐴𝐵) ⊆ On → (𝐴𝐵) ⊆ suc (𝐴𝐵))
167165, 166syl 17 . . . . . 6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ⊆ suc (𝐴𝐵))
168167unssad 3954 . . . . 5 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → 𝐴 ⊆ suc (𝐴𝐵))
169 df-ss 3748 . . . . 5 (𝐴 ⊆ suc (𝐴𝐵) ↔ (𝐴 ∩ suc (𝐴𝐵)) = 𝐴)
170168, 169sylib 209 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∩ suc (𝐴𝐵)) = 𝐴)
171170fveq2d 6381 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹𝐴))
172167unssbd 3955 . . . . 5 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ⊆ suc (𝐴𝐵))
173 df-ss 3748 . . . . 5 (𝐵 ⊆ suc (𝐴𝐵) ↔ (𝐵 ∩ suc (𝐴𝐵)) = 𝐵)
174172, 173sylib 209 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐵 ∩ suc (𝐴𝐵)) = 𝐵)
175174fveq2d 6381 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐹‘(𝐵 ∩ suc (𝐴𝐵))) = (𝐹𝐵))
176171, 175eqeq12d 2780 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵))) ↔ (𝐹𝐴) = (𝐹𝐵)))
177170, 174eqeq12d 2780 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐴 ∩ suc (𝐴𝐵)) = (𝐵 ∩ suc (𝐴𝐵)) ↔ 𝐴 = 𝐵))
178163, 176, 1773imtr3d 284 1 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹𝐴) = (𝐹𝐵) → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  cun 3732  cin 3733  wss 3734  c0 4081  𝒫 cpw 4317  {csn 4336   cuni 4596   ciun 4678  cmpt 4890   × cxp 5277  Ord word 5909  Oncon0 5910  suc csuc 5912  cfv 6070  (class class class)co 6844  ωcom 7265   +𝑜 coa 7763  Fincfn 8162  cardccrd 9014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-1st 7368  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-2o 7767  df-oadd 7770  df-er 7949  df-map 8064  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-card 9018  df-cda 9245
This theorem is referenced by:  ackbij1lem17  9313
  Copyright terms: Public domain W3C validator