MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem16 Structured version   Visualization version   GIF version

Theorem ackbij1lem16 10303
Description: Lemma for ackbij1 10306. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem16 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹𝐴) = (𝐹𝐵) → 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ackbij1lem16
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4258 . . . . . . . . 9 (𝒫 ω ∩ Fin) ⊆ 𝒫 ω
21sseli 4004 . . . . . . . 8 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω)
32elpwid 4631 . . . . . . 7 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ⊆ ω)
43adantr 480 . . . . . 6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → 𝐴 ⊆ ω)
51sseli 4004 . . . . . . . 8 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ 𝒫 ω)
65elpwid 4631 . . . . . . 7 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ⊆ ω)
76adantl 481 . . . . . 6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ⊆ ω)
84, 7unssd 4215 . . . . 5 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ⊆ ω)
9 inss2 4259 . . . . . . 7 (𝒫 ω ∩ Fin) ⊆ Fin
109sseli 4004 . . . . . 6 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin)
119sseli 4004 . . . . . 6 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ Fin)
12 unfi 9238 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
1310, 11, 12syl2an 595 . . . . 5 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ Fin)
14 nnunifi 9355 . . . . 5 (((𝐴𝐵) ⊆ ω ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) ∈ ω)
158, 13, 14syl2anc 583 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ ω)
16 peano2 7929 . . . 4 ( (𝐴𝐵) ∈ ω → suc (𝐴𝐵) ∈ ω)
1715, 16syl 17 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → suc (𝐴𝐵) ∈ ω)
18 ineq2 4235 . . . . . . . 8 (𝑎 = ∅ → (𝐴𝑎) = (𝐴 ∩ ∅))
1918fveq2d 6924 . . . . . . 7 (𝑎 = ∅ → (𝐹‘(𝐴𝑎)) = (𝐹‘(𝐴 ∩ ∅)))
20 ineq2 4235 . . . . . . . 8 (𝑎 = ∅ → (𝐵𝑎) = (𝐵 ∩ ∅))
2120fveq2d 6924 . . . . . . 7 (𝑎 = ∅ → (𝐹‘(𝐵𝑎)) = (𝐹‘(𝐵 ∩ ∅)))
2219, 21eqeq12d 2756 . . . . . 6 (𝑎 = ∅ → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) ↔ (𝐹‘(𝐴 ∩ ∅)) = (𝐹‘(𝐵 ∩ ∅))))
2318, 20eqeq12d 2756 . . . . . 6 (𝑎 = ∅ → ((𝐴𝑎) = (𝐵𝑎) ↔ (𝐴 ∩ ∅) = (𝐵 ∩ ∅)))
2422, 23imbi12d 344 . . . . 5 (𝑎 = ∅ → (((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎)) ↔ ((𝐹‘(𝐴 ∩ ∅)) = (𝐹‘(𝐵 ∩ ∅)) → (𝐴 ∩ ∅) = (𝐵 ∩ ∅))))
2524imbi2d 340 . . . 4 (𝑎 = ∅ → (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎))) ↔ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ ∅)) = (𝐹‘(𝐵 ∩ ∅)) → (𝐴 ∩ ∅) = (𝐵 ∩ ∅)))))
26 ineq2 4235 . . . . . . . 8 (𝑎 = 𝑏 → (𝐴𝑎) = (𝐴𝑏))
2726fveq2d 6924 . . . . . . 7 (𝑎 = 𝑏 → (𝐹‘(𝐴𝑎)) = (𝐹‘(𝐴𝑏)))
28 ineq2 4235 . . . . . . . 8 (𝑎 = 𝑏 → (𝐵𝑎) = (𝐵𝑏))
2928fveq2d 6924 . . . . . . 7 (𝑎 = 𝑏 → (𝐹‘(𝐵𝑎)) = (𝐹‘(𝐵𝑏)))
3027, 29eqeq12d 2756 . . . . . 6 (𝑎 = 𝑏 → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) ↔ (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
3126, 28eqeq12d 2756 . . . . . 6 (𝑎 = 𝑏 → ((𝐴𝑎) = (𝐵𝑎) ↔ (𝐴𝑏) = (𝐵𝑏)))
3230, 31imbi12d 344 . . . . 5 (𝑎 = 𝑏 → (((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎)) ↔ ((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏))))
3332imbi2d 340 . . . 4 (𝑎 = 𝑏 → (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎))) ↔ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)))))
34 ineq2 4235 . . . . . . . 8 (𝑎 = suc 𝑏 → (𝐴𝑎) = (𝐴 ∩ suc 𝑏))
3534fveq2d 6924 . . . . . . 7 (𝑎 = suc 𝑏 → (𝐹‘(𝐴𝑎)) = (𝐹‘(𝐴 ∩ suc 𝑏)))
36 ineq2 4235 . . . . . . . 8 (𝑎 = suc 𝑏 → (𝐵𝑎) = (𝐵 ∩ suc 𝑏))
3736fveq2d 6924 . . . . . . 7 (𝑎 = suc 𝑏 → (𝐹‘(𝐵𝑎)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
3835, 37eqeq12d 2756 . . . . . 6 (𝑎 = suc 𝑏 → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) ↔ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))))
3934, 36eqeq12d 2756 . . . . . 6 (𝑎 = suc 𝑏 → ((𝐴𝑎) = (𝐵𝑎) ↔ (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
4038, 39imbi12d 344 . . . . 5 (𝑎 = suc 𝑏 → (((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎)) ↔ ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏))))
4140imbi2d 340 . . . 4 (𝑎 = suc 𝑏 → (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎))) ↔ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
42 ineq2 4235 . . . . . . . 8 (𝑎 = suc (𝐴𝐵) → (𝐴𝑎) = (𝐴 ∩ suc (𝐴𝐵)))
4342fveq2d 6924 . . . . . . 7 (𝑎 = suc (𝐴𝐵) → (𝐹‘(𝐴𝑎)) = (𝐹‘(𝐴 ∩ suc (𝐴𝐵))))
44 ineq2 4235 . . . . . . . 8 (𝑎 = suc (𝐴𝐵) → (𝐵𝑎) = (𝐵 ∩ suc (𝐴𝐵)))
4544fveq2d 6924 . . . . . . 7 (𝑎 = suc (𝐴𝐵) → (𝐹‘(𝐵𝑎)) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵))))
4643, 45eqeq12d 2756 . . . . . 6 (𝑎 = suc (𝐴𝐵) → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) ↔ (𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵)))))
4742, 44eqeq12d 2756 . . . . . 6 (𝑎 = suc (𝐴𝐵) → ((𝐴𝑎) = (𝐵𝑎) ↔ (𝐴 ∩ suc (𝐴𝐵)) = (𝐵 ∩ suc (𝐴𝐵))))
4846, 47imbi12d 344 . . . . 5 (𝑎 = suc (𝐴𝐵) → (((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎)) ↔ ((𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵))) → (𝐴 ∩ suc (𝐴𝐵)) = (𝐵 ∩ suc (𝐴𝐵)))))
4948imbi2d 340 . . . 4 (𝑎 = suc (𝐴𝐵) → (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴𝑎)) = (𝐹‘(𝐵𝑎)) → (𝐴𝑎) = (𝐵𝑎))) ↔ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵))) → (𝐴 ∩ suc (𝐴𝐵)) = (𝐵 ∩ suc (𝐴𝐵))))))
50 in0 4418 . . . . . 6 (𝐴 ∩ ∅) = ∅
51 in0 4418 . . . . . 6 (𝐵 ∩ ∅) = ∅
5250, 51eqtr4i 2771 . . . . 5 (𝐴 ∩ ∅) = (𝐵 ∩ ∅)
53522a1i 12 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ ∅)) = (𝐹‘(𝐵 ∩ ∅)) → (𝐴 ∩ ∅) = (𝐵 ∩ ∅)))
54 simp13 1205 . . . . . . . . . . . . 13 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
55 3simpa 1148 . . . . . . . . . . . . . 14 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))))
56 ackbij1lem2 10289 . . . . . . . . . . . . . . . . 17 (𝑏𝐴 → (𝐴 ∩ suc 𝑏) = ({𝑏} ∪ (𝐴𝑏)))
5756fveq2d 6924 . . . . . . . . . . . . . . . 16 (𝑏𝐴 → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘({𝑏} ∪ (𝐴𝑏))))
58573ad2ant2 1134 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘({𝑏} ∪ (𝐴𝑏))))
59 ackbij1lem4 10291 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ω → {𝑏} ∈ (𝒫 ω ∩ Fin))
6059adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → {𝑏} ∈ (𝒫 ω ∩ Fin))
61 simprl 770 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → 𝐴 ∈ (𝒫 ω ∩ Fin))
62 inss1 4258 . . . . . . . . . . . . . . . . . 18 (𝐴𝑏) ⊆ 𝐴
63 ackbij.f . . . . . . . . . . . . . . . . . . 19 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
6463ackbij1lem11 10298 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝑏) ⊆ 𝐴) → (𝐴𝑏) ∈ (𝒫 ω ∩ Fin))
6561, 62, 64sylancl 585 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐴𝑏) ∈ (𝒫 ω ∩ Fin))
66 incom 4230 . . . . . . . . . . . . . . . . . 18 ({𝑏} ∩ (𝐴𝑏)) = ((𝐴𝑏) ∩ {𝑏})
67 inss2 4259 . . . . . . . . . . . . . . . . . . 19 (𝐴𝑏) ⊆ 𝑏
68 nnord 7911 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 ∈ ω → Ord 𝑏)
69 orddisj 6433 . . . . . . . . . . . . . . . . . . . . 21 (Ord 𝑏 → (𝑏 ∩ {𝑏}) = ∅)
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ω → (𝑏 ∩ {𝑏}) = ∅)
7170adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝑏 ∩ {𝑏}) = ∅)
72 ssdisj 4483 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑏) ⊆ 𝑏 ∧ (𝑏 ∩ {𝑏}) = ∅) → ((𝐴𝑏) ∩ {𝑏}) = ∅)
7367, 71, 72sylancr 586 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → ((𝐴𝑏) ∩ {𝑏}) = ∅)
7466, 73eqtrid 2792 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → ({𝑏} ∩ (𝐴𝑏)) = ∅)
7563ackbij1lem9 10296 . . . . . . . . . . . . . . . . 17 (({𝑏} ∈ (𝒫 ω ∩ Fin) ∧ (𝐴𝑏) ∈ (𝒫 ω ∩ Fin) ∧ ({𝑏} ∩ (𝐴𝑏)) = ∅) → (𝐹‘({𝑏} ∪ (𝐴𝑏))) = ((𝐹‘{𝑏}) +o (𝐹‘(𝐴𝑏))))
7660, 65, 74, 75syl3anc 1371 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐹‘({𝑏} ∪ (𝐴𝑏))) = ((𝐹‘{𝑏}) +o (𝐹‘(𝐴𝑏))))
77763ad2ant1 1133 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘({𝑏} ∪ (𝐴𝑏))) = ((𝐹‘{𝑏}) +o (𝐹‘(𝐴𝑏))))
7858, 77eqtrd 2780 . . . . . . . . . . . . . 14 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = ((𝐹‘{𝑏}) +o (𝐹‘(𝐴𝑏))))
7955, 78syl3an1 1163 . . . . . . . . . . . . 13 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = ((𝐹‘{𝑏}) +o (𝐹‘(𝐴𝑏))))
80 ackbij1lem2 10289 . . . . . . . . . . . . . . . . 17 (𝑏𝐵 → (𝐵 ∩ suc 𝑏) = ({𝑏} ∪ (𝐵𝑏)))
8180fveq2d 6924 . . . . . . . . . . . . . . . 16 (𝑏𝐵 → (𝐹‘(𝐵 ∩ suc 𝑏)) = (𝐹‘({𝑏} ∪ (𝐵𝑏))))
82813ad2ant3 1135 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐵 ∩ suc 𝑏)) = (𝐹‘({𝑏} ∪ (𝐵𝑏))))
83 simprr 772 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → 𝐵 ∈ (𝒫 ω ∩ Fin))
84 inss1 4258 . . . . . . . . . . . . . . . . . 18 (𝐵𝑏) ⊆ 𝐵
8563ackbij1lem11 10298 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵𝑏) ⊆ 𝐵) → (𝐵𝑏) ∈ (𝒫 ω ∩ Fin))
8683, 84, 85sylancl 585 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐵𝑏) ∈ (𝒫 ω ∩ Fin))
87 incom 4230 . . . . . . . . . . . . . . . . . 18 ({𝑏} ∩ (𝐵𝑏)) = ((𝐵𝑏) ∩ {𝑏})
88 inss2 4259 . . . . . . . . . . . . . . . . . . 19 (𝐵𝑏) ⊆ 𝑏
89 ssdisj 4483 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝑏) ⊆ 𝑏 ∧ (𝑏 ∩ {𝑏}) = ∅) → ((𝐵𝑏) ∩ {𝑏}) = ∅)
9088, 71, 89sylancr 586 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → ((𝐵𝑏) ∩ {𝑏}) = ∅)
9187, 90eqtrid 2792 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → ({𝑏} ∩ (𝐵𝑏)) = ∅)
9263ackbij1lem9 10296 . . . . . . . . . . . . . . . . 17 (({𝑏} ∈ (𝒫 ω ∩ Fin) ∧ (𝐵𝑏) ∈ (𝒫 ω ∩ Fin) ∧ ({𝑏} ∩ (𝐵𝑏)) = ∅) → (𝐹‘({𝑏} ∪ (𝐵𝑏))) = ((𝐹‘{𝑏}) +o (𝐹‘(𝐵𝑏))))
9360, 86, 91, 92syl3anc 1371 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐹‘({𝑏} ∪ (𝐵𝑏))) = ((𝐹‘{𝑏}) +o (𝐹‘(𝐵𝑏))))
94933ad2ant1 1133 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘({𝑏} ∪ (𝐵𝑏))) = ((𝐹‘{𝑏}) +o (𝐹‘(𝐵𝑏))))
9582, 94eqtrd 2780 . . . . . . . . . . . . . 14 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐵 ∩ suc 𝑏)) = ((𝐹‘{𝑏}) +o (𝐹‘(𝐵𝑏))))
9655, 95syl3an1 1163 . . . . . . . . . . . . 13 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐵 ∩ suc 𝑏)) = ((𝐹‘{𝑏}) +o (𝐹‘(𝐵𝑏))))
9754, 79, 963eqtr3d 2788 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → ((𝐹‘{𝑏}) +o (𝐹‘(𝐴𝑏))) = ((𝐹‘{𝑏}) +o (𝐹‘(𝐵𝑏))))
9863ackbij1lem10 10297 . . . . . . . . . . . . . . . . 17 𝐹:(𝒫 ω ∩ Fin)⟶ω
9998ffvelcdmi 7117 . . . . . . . . . . . . . . . 16 ({𝑏} ∈ (𝒫 ω ∩ Fin) → (𝐹‘{𝑏}) ∈ ω)
10060, 99syl 17 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐹‘{𝑏}) ∈ ω)
10198ffvelcdmi 7117 . . . . . . . . . . . . . . . 16 ((𝐴𝑏) ∈ (𝒫 ω ∩ Fin) → (𝐹‘(𝐴𝑏)) ∈ ω)
10265, 101syl 17 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐹‘(𝐴𝑏)) ∈ ω)
10398ffvelcdmi 7117 . . . . . . . . . . . . . . . 16 ((𝐵𝑏) ∈ (𝒫 ω ∩ Fin) → (𝐹‘(𝐵𝑏)) ∈ ω)
10486, 103syl 17 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (𝐹‘(𝐵𝑏)) ∈ ω)
105 nnacan 8684 . . . . . . . . . . . . . . 15 (((𝐹‘{𝑏}) ∈ ω ∧ (𝐹‘(𝐴𝑏)) ∈ ω ∧ (𝐹‘(𝐵𝑏)) ∈ ω) → (((𝐹‘{𝑏}) +o (𝐹‘(𝐴𝑏))) = ((𝐹‘{𝑏}) +o (𝐹‘(𝐵𝑏))) ↔ (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
106100, 102, 104, 105syl3anc 1371 . . . . . . . . . . . . . 14 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin))) → (((𝐹‘{𝑏}) +o (𝐹‘(𝐴𝑏))) = ((𝐹‘{𝑏}) +o (𝐹‘(𝐵𝑏))) ↔ (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
1071063adant3 1132 . . . . . . . . . . . . 13 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (((𝐹‘{𝑏}) +o (𝐹‘(𝐴𝑏))) = ((𝐹‘{𝑏}) +o (𝐹‘(𝐵𝑏))) ↔ (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
1081073ad2ant1 1133 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → (((𝐹‘{𝑏}) +o (𝐹‘(𝐴𝑏))) = ((𝐹‘{𝑏}) +o (𝐹‘(𝐵𝑏))) ↔ (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
10997, 108mpbid 232 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)))
110 uneq2 4185 . . . . . . . . . . . . . . 15 ((𝐴𝑏) = (𝐵𝑏) → ({𝑏} ∪ (𝐴𝑏)) = ({𝑏} ∪ (𝐵𝑏)))
111110adantl 481 . . . . . . . . . . . . . 14 (((𝑏𝐴𝑏𝐵) ∧ (𝐴𝑏) = (𝐵𝑏)) → ({𝑏} ∪ (𝐴𝑏)) = ({𝑏} ∪ (𝐵𝑏)))
11256ad2antrr 725 . . . . . . . . . . . . . 14 (((𝑏𝐴𝑏𝐵) ∧ (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = ({𝑏} ∪ (𝐴𝑏)))
11380ad2antlr 726 . . . . . . . . . . . . . 14 (((𝑏𝐴𝑏𝐵) ∧ (𝐴𝑏) = (𝐵𝑏)) → (𝐵 ∩ suc 𝑏) = ({𝑏} ∪ (𝐵𝑏)))
114111, 112, 1133eqtr4d 2790 . . . . . . . . . . . . 13 (((𝑏𝐴𝑏𝐵) ∧ (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏))
115114ex 412 . . . . . . . . . . . 12 ((𝑏𝐴𝑏𝐵) → ((𝐴𝑏) = (𝐵𝑏) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1161153adant1 1130 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → ((𝐴𝑏) = (𝐵𝑏) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
117109, 116embantd 59 . . . . . . . . . 10 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴𝑏𝐵) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1181173exp 1119 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (𝑏𝐴 → (𝑏𝐵 → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
119 simp13 1205 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
120119eqcomd 2746 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → (𝐹‘(𝐵 ∩ suc 𝑏)) = (𝐹‘(𝐴 ∩ suc 𝑏)))
121 simp12r 1287 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → 𝐵 ∈ (𝒫 ω ∩ Fin))
122 simp12l 1286 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → 𝐴 ∈ (𝒫 ω ∩ Fin))
123 simp11 1203 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → 𝑏 ∈ ω)
124 simp3 1138 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → 𝑏𝐵)
125 simp2 1137 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → ¬ 𝑏𝐴)
12663ackbij1lem15 10302 . . . . . . . . . . . 12 (((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑏 ∈ ω ∧ 𝑏𝐵 ∧ ¬ 𝑏𝐴)) → ¬ (𝐹‘(𝐵 ∩ suc 𝑏)) = (𝐹‘(𝐴 ∩ suc 𝑏)))
127121, 122, 123, 124, 125, 126syl23anc 1377 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → ¬ (𝐹‘(𝐵 ∩ suc 𝑏)) = (𝐹‘(𝐴 ∩ suc 𝑏)))
128120, 127pm2.21dd 195 . . . . . . . . . 10 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴𝑏𝐵) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1291283exp 1119 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (¬ 𝑏𝐴 → (𝑏𝐵 → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
130118, 129pm2.61d 179 . . . . . . . 8 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (𝑏𝐵 → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏))))
131 simp13 1205 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
132 simp12l 1286 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → 𝐴 ∈ (𝒫 ω ∩ Fin))
133 simp12r 1287 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → 𝐵 ∈ (𝒫 ω ∩ Fin))
134 simp11 1203 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → 𝑏 ∈ ω)
135 simp2 1137 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → 𝑏𝐴)
136 simp3 1138 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ¬ 𝑏𝐵)
13763ackbij1lem15 10302 . . . . . . . . . . . 12 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑏 ∈ ω ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵)) → ¬ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
138132, 133, 134, 135, 136, 137syl23anc 1377 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ¬ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
139131, 138pm2.21dd 195 . . . . . . . . . 10 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1401393exp 1119 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (𝑏𝐴 → (¬ 𝑏𝐵 → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
141 simp13 1205 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)))
142 ackbij1lem1 10288 . . . . . . . . . . . . . . . . 17 𝑏𝐴 → (𝐴 ∩ suc 𝑏) = (𝐴𝑏))
143142adantr 480 . . . . . . . . . . . . . . . 16 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐴 ∩ suc 𝑏) = (𝐴𝑏))
144143fveq2d 6924 . . . . . . . . . . . . . . 15 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐴𝑏)))
145 ackbij1lem1 10288 . . . . . . . . . . . . . . . . 17 𝑏𝐵 → (𝐵 ∩ suc 𝑏) = (𝐵𝑏))
146145adantl 481 . . . . . . . . . . . . . . . 16 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐵 ∩ suc 𝑏) = (𝐵𝑏))
147146fveq2d 6924 . . . . . . . . . . . . . . 15 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐹‘(𝐵 ∩ suc 𝑏)) = (𝐹‘(𝐵𝑏)))
148144, 147eqeq12d 2756 . . . . . . . . . . . . . 14 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) ↔ (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
149148biimpd 229 . . . . . . . . . . . . 13 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
1501493adant1 1130 . . . . . . . . . . . 12 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏))))
151141, 150mpd 15 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)))
152143, 146eqeq12d 2756 . . . . . . . . . . . . 13 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ((𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏) ↔ (𝐴𝑏) = (𝐵𝑏)))
153152biimprd 248 . . . . . . . . . . . 12 ((¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ((𝐴𝑏) = (𝐵𝑏) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1541533adant1 1130 . . . . . . . . . . 11 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → ((𝐴𝑏) = (𝐵𝑏) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
155151, 154embantd 59 . . . . . . . . . 10 (((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) ∧ ¬ 𝑏𝐴 ∧ ¬ 𝑏𝐵) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1561553exp 1119 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (¬ 𝑏𝐴 → (¬ 𝑏𝐵 → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
157140, 156pm2.61d 179 . . . . . . . 8 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (¬ 𝑏𝐵 → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏))))
158130, 157pm2.61d 179 . . . . . . 7 ((𝑏 ∈ ω ∧ (𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏))) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))
1591583exp 1119 . . . . . 6 (𝑏 ∈ ω → ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
160159com34 91 . . . . 5 (𝑏 ∈ ω → ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏)) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
161160a2d 29 . . . 4 (𝑏 ∈ ω → (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴𝑏)) = (𝐹‘(𝐵𝑏)) → (𝐴𝑏) = (𝐵𝑏))) → ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc 𝑏)) = (𝐹‘(𝐵 ∩ suc 𝑏)) → (𝐴 ∩ suc 𝑏) = (𝐵 ∩ suc 𝑏)))))
16225, 33, 41, 49, 53, 161finds 7936 . . 3 (suc (𝐴𝐵) ∈ ω → ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵))) → (𝐴 ∩ suc (𝐴𝐵)) = (𝐵 ∩ suc (𝐴𝐵)))))
16317, 162mpcom 38 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵))) → (𝐴 ∩ suc (𝐴𝐵)) = (𝐵 ∩ suc (𝐴𝐵))))
164 omsson 7907 . . . . . . . 8 ω ⊆ On
1658, 164sstrdi 4021 . . . . . . 7 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ⊆ On)
166 onsucuni 7864 . . . . . . 7 ((𝐴𝐵) ⊆ On → (𝐴𝐵) ⊆ suc (𝐴𝐵))
167165, 166syl 17 . . . . . 6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ⊆ suc (𝐴𝐵))
168167unssad 4216 . . . . 5 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → 𝐴 ⊆ suc (𝐴𝐵))
169 dfss2 3994 . . . . 5 (𝐴 ⊆ suc (𝐴𝐵) ↔ (𝐴 ∩ suc (𝐴𝐵)) = 𝐴)
170168, 169sylib 218 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∩ suc (𝐴𝐵)) = 𝐴)
171170fveq2d 6924 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹𝐴))
172167unssbd 4217 . . . . 5 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → 𝐵 ⊆ suc (𝐴𝐵))
173 dfss2 3994 . . . . 5 (𝐵 ⊆ suc (𝐴𝐵) ↔ (𝐵 ∩ suc (𝐴𝐵)) = 𝐵)
174172, 173sylib 218 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐵 ∩ suc (𝐴𝐵)) = 𝐵)
175174fveq2d 6924 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐹‘(𝐵 ∩ suc (𝐴𝐵))) = (𝐹𝐵))
176171, 175eqeq12d 2756 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘(𝐴 ∩ suc (𝐴𝐵))) = (𝐹‘(𝐵 ∩ suc (𝐴𝐵))) ↔ (𝐹𝐴) = (𝐹𝐵)))
177170, 174eqeq12d 2756 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐴 ∩ suc (𝐴𝐵)) = (𝐵 ∩ suc (𝐴𝐵)) ↔ 𝐴 = 𝐵))
178163, 176, 1773imtr3d 293 1 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹𝐴) = (𝐹𝐵) → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  cun 3974  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931   ciun 5015  cmpt 5249   × cxp 5698  Ord word 6394  Oncon0 6395  suc csuc 6397  cfv 6573  (class class class)co 7448  ωcom 7903   +o coa 8519  Fincfn 9003  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008
This theorem is referenced by:  ackbij1lem17  10304
  Copyright terms: Public domain W3C validator