Step | Hyp | Ref
| Expression |
1 | | ordon 7627 |
. . . 4
⊢ Ord
On |
2 | | tz7.5 6287 |
. . . 4
⊢ ((Ord On
∧ 𝐴 ⊆ On ∧
𝐴 ≠ ∅) →
∃𝑥 ∈ 𝐴 (𝐴 ∩ 𝑥) = ∅) |
3 | 1, 2 | mp3an1 1447 |
. . 3
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) →
∃𝑥 ∈ 𝐴 (𝐴 ∩ 𝑥) = ∅) |
4 | | ssel 3914 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ⊆ On → (𝑥 ∈ 𝐴 → 𝑥 ∈ On)) |
5 | 4 | imdistani 569 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → (𝐴 ⊆ On ∧ 𝑥 ∈ On)) |
6 | | ssel 3914 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ⊆ On → (𝑧 ∈ 𝐴 → 𝑧 ∈ On)) |
7 | | ontri1 6300 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ On ∧ 𝑧 ∈ On) → (𝑥 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑥)) |
8 | | ssel 3914 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ⊆ 𝑧 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑧)) |
9 | 7, 8 | syl6bir 253 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ On ∧ 𝑧 ∈ On) → (¬ 𝑧 ∈ 𝑥 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑧))) |
10 | 9 | ex 413 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ On → (𝑧 ∈ On → (¬ 𝑧 ∈ 𝑥 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑧)))) |
11 | 6, 10 | sylan9 508 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ On) → (𝑧 ∈ 𝐴 → (¬ 𝑧 ∈ 𝑥 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑧)))) |
12 | 11 | com4r 94 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝑥 → ((𝐴 ⊆ On ∧ 𝑥 ∈ On) → (𝑧 ∈ 𝐴 → (¬ 𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)))) |
13 | 12 | imp31 418 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ 𝑥 ∧ (𝐴 ⊆ On ∧ 𝑥 ∈ On)) ∧ 𝑧 ∈ 𝐴) → (¬ 𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)) |
14 | 13 | ralimdva 3108 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝑥 ∧ (𝐴 ⊆ On ∧ 𝑥 ∈ On)) → (∀𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑥 → ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧)) |
15 | | disj 4381 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∩ 𝑥) = ∅ ↔ ∀𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑥) |
16 | | vex 3436 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑦 ∈ V |
17 | 16 | elint2 4886 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ∩ 𝐴
↔ ∀𝑧 ∈
𝐴 𝑦 ∈ 𝑧) |
18 | 14, 15, 17 | 3imtr4g 296 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝑥 ∧ (𝐴 ⊆ On ∧ 𝑥 ∈ On)) → ((𝐴 ∩ 𝑥) = ∅ → 𝑦 ∈ ∩ 𝐴)) |
19 | 5, 18 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝑥 ∧ (𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴)) → ((𝐴 ∩ 𝑥) = ∅ → 𝑦 ∈ ∩ 𝐴)) |
20 | 19 | exp32 421 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝑥 → (𝐴 ⊆ On → (𝑥 ∈ 𝐴 → ((𝐴 ∩ 𝑥) = ∅ → 𝑦 ∈ ∩ 𝐴)))) |
21 | 20 | com4l 92 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ On → (𝑥 ∈ 𝐴 → ((𝐴 ∩ 𝑥) = ∅ → (𝑦 ∈ 𝑥 → 𝑦 ∈ ∩ 𝐴)))) |
22 | 21 | imp32 419 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ (𝐴 ∩ 𝑥) = ∅)) → (𝑦 ∈ 𝑥 → 𝑦 ∈ ∩ 𝐴)) |
23 | 22 | ssrdv 3927 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ (𝐴 ∩ 𝑥) = ∅)) → 𝑥 ⊆ ∩ 𝐴) |
24 | | intss1 4894 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) |
25 | 24 | ad2antrl 725 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ (𝐴 ∩ 𝑥) = ∅)) → ∩ 𝐴
⊆ 𝑥) |
26 | 23, 25 | eqssd 3938 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ (𝐴 ∩ 𝑥) = ∅)) → 𝑥 = ∩ 𝐴) |
27 | 26 | eleq1d 2823 |
. . . . . . . 8
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ (𝐴 ∩ 𝑥) = ∅)) → (𝑥 ∈ 𝐴 ↔ ∩ 𝐴 ∈ 𝐴)) |
28 | 27 | biimpd 228 |
. . . . . . 7
⊢ ((𝐴 ⊆ On ∧ (𝑥 ∈ 𝐴 ∧ (𝐴 ∩ 𝑥) = ∅)) → (𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ 𝐴)) |
29 | 28 | exp32 421 |
. . . . . 6
⊢ (𝐴 ⊆ On → (𝑥 ∈ 𝐴 → ((𝐴 ∩ 𝑥) = ∅ → (𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ 𝐴)))) |
30 | 29 | com34 91 |
. . . . 5
⊢ (𝐴 ⊆ On → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → ((𝐴 ∩ 𝑥) = ∅ → ∩ 𝐴
∈ 𝐴)))) |
31 | 30 | pm2.43d 53 |
. . . 4
⊢ (𝐴 ⊆ On → (𝑥 ∈ 𝐴 → ((𝐴 ∩ 𝑥) = ∅ → ∩ 𝐴
∈ 𝐴))) |
32 | 31 | rexlimdv 3212 |
. . 3
⊢ (𝐴 ⊆ On → (∃𝑥 ∈ 𝐴 (𝐴 ∩ 𝑥) = ∅ → ∩ 𝐴
∈ 𝐴)) |
33 | 3, 32 | syl5 34 |
. 2
⊢ (𝐴 ⊆ On → ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴
∈ 𝐴)) |
34 | 33 | anabsi5 666 |
1
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴
∈ 𝐴) |