Step | Hyp | Ref
| Expression |
1 | | eldiophelnn0 40586 |
. . 3
⊢ (𝐴 ∈ (Dioph‘𝑁) → 𝑁 ∈
ℕ0) |
2 | | id 22 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℕ0) |
3 | | zex 12328 |
. . . . . . 7
⊢ ℤ
∈ V |
4 | | difexg 5251 |
. . . . . . 7
⊢ (ℤ
∈ V → (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∈
V) |
5 | 3, 4 | mp1i 13 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∈ V) |
6 | | ominf 9035 |
. . . . . . 7
⊢ ¬
ω ∈ Fin |
7 | | nn0z 12343 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
8 | | lzenom 40592 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → (ℤ
∖ (ℤ≥‘(𝑁 + 1))) ≈ ω) |
9 | | enfi 8973 |
. . . . . . . 8
⊢ ((ℤ
∖ (ℤ≥‘(𝑁 + 1))) ≈ ω → ((ℤ
∖ (ℤ≥‘(𝑁 + 1))) ∈ Fin ↔ ω ∈
Fin)) |
10 | 7, 8, 9 | 3syl 18 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∈ Fin ↔ ω ∈
Fin)) |
11 | 6, 10 | mtbiri 327 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ ¬ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∈ Fin) |
12 | | fz1eqin 40591 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (1...𝑁) = ((ℤ
∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ)) |
13 | | inss1 4162 |
. . . . . . 7
⊢ ((ℤ
∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ) ⊆ (ℤ
∖ (ℤ≥‘(𝑁 + 1))) |
14 | 12, 13 | eqsstrdi 3975 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (1...𝑁) ⊆
(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) |
15 | | eldioph2b 40585 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∈ V) ∧ (¬ (ℤ
∖ (ℤ≥‘(𝑁 + 1))) ∈ Fin ∧ (1...𝑁) ⊆ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑎 ∈ (mzPoly‘(ℤ ∖
(ℤ≥‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)})) |
16 | 2, 5, 11, 14, 15 | syl22anc 836 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝐴 ∈
(Dioph‘𝑁) ↔
∃𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)})) |
17 | | nnex 11979 |
. . . . . . 7
⊢ ℕ
∈ V |
18 | 17 | a1i 11 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ ℕ ∈ V) |
19 | | 1z 12350 |
. . . . . . 7
⊢ 1 ∈
ℤ |
20 | | nnuz 12621 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
21 | 20 | uzinf 13685 |
. . . . . . 7
⊢ (1 ∈
ℤ → ¬ ℕ ∈ Fin) |
22 | 19, 21 | mp1i 13 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ ¬ ℕ ∈ Fin) |
23 | | elfznn 13285 |
. . . . . . . 8
⊢ (𝑎 ∈ (1...𝑁) → 𝑎 ∈ ℕ) |
24 | 23 | ssriv 3925 |
. . . . . . 7
⊢
(1...𝑁) ⊆
ℕ |
25 | 24 | a1i 11 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (1...𝑁) ⊆
ℕ) |
26 | | eldioph2b 40585 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) →
(𝐵 ∈
(Dioph‘𝑁) ↔
∃𝑏 ∈
(mzPoly‘ℕ)𝐵 =
{𝑐 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)})) |
27 | 2, 18, 22, 25, 26 | syl22anc 836 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝐵 ∈
(Dioph‘𝑁) ↔
∃𝑏 ∈
(mzPoly‘ℕ)𝐵 =
{𝑐 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)})) |
28 | 16, 27 | anbi12d 631 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ((𝐴 ∈
(Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) ↔ (∃𝑎 ∈ (mzPoly‘(ℤ
∖ (ℤ≥‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∧ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)}))) |
29 | | reeanv 3294 |
. . . . 5
⊢
(∃𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1))))∃𝑏 ∈ (mzPoly‘ℕ)(𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)}) ↔ (∃𝑎 ∈ (mzPoly‘(ℤ ∖
(ℤ≥‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∧ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)})) |
30 | | inab 4233 |
. . . . . . . . 9
⊢ ({𝑐 ∣ ∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)}) = {𝑐 ∣ (∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))} |
31 | | reeanv 3294 |
. . . . . . . . . . 11
⊢
(∃𝑑 ∈
(ℕ0 ↑m (ℤ ∖
(ℤ≥‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0
↑m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)) ↔ (∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) |
32 | | simplrl 774 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → 𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))) |
33 | | simplrr 775 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → 𝑒 ∈ (ℕ0
↑m ℕ)) |
34 | 12 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ) = (1...𝑁)) |
35 | 34 | reseq2d 5891 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ (𝑑 ↾ ((ℤ
∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ)) = (𝑑 ↾ (1...𝑁))) |
36 | 35 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (𝑑 ↾ ((ℤ ∖
(ℤ≥‘(𝑁 + 1))) ∩ ℕ)) = (𝑑 ↾ (1...𝑁))) |
37 | 34 | reseq2d 5891 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ (𝑒 ↾ ((ℤ
∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ (1...𝑁))) |
38 | 37 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (𝑒 ↾ ((ℤ ∖
(ℤ≥‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ (1...𝑁))) |
39 | | simprrl 778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → 𝑐 = (𝑒 ↾ (1...𝑁))) |
40 | | simprll 776 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → 𝑐 = (𝑑 ↾ (1...𝑁))) |
41 | 38, 39, 40 | 3eqtr2d 2784 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (𝑒 ↾ ((ℤ ∖
(ℤ≥‘(𝑁 + 1))) ∩ ℕ)) = (𝑑 ↾ (1...𝑁))) |
42 | 36, 41 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (𝑑 ↾ ((ℤ ∖
(ℤ≥‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ ((ℤ ∖
(ℤ≥‘(𝑁 + 1))) ∩ ℕ))) |
43 | | elmapresaun 8668 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ) ∧ (𝑑 ↾ ((ℤ ∖
(ℤ≥‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ ((ℤ ∖
(ℤ≥‘(𝑁 + 1))) ∩ ℕ))) → (𝑑 ∪ 𝑒) ∈ (ℕ0
↑m ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∪
ℕ))) |
44 | 32, 33, 42, 43 | syl3anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (𝑑 ∪ 𝑒) ∈ (ℕ0
↑m ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∪
ℕ))) |
45 | 20 | uneq2i 4094 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℤ
∖ (ℤ≥‘(𝑁 + 1))) ∪ ℕ) = ((ℤ ∖
(ℤ≥‘(𝑁 + 1))) ∪
(ℤ≥‘1)) |
46 | 19 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ 1 ∈ ℤ) |
47 | | nn0p1nn 12272 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
48 | 47 | nnge1d 12021 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ 1 ≤ (𝑁 +
1)) |
49 | | lzunuz 40590 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℤ ∧ 1 ∈
ℤ ∧ 1 ≤ (𝑁 +
1)) → ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∪
(ℤ≥‘1)) = ℤ) |
50 | 7, 46, 48, 49 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∪
(ℤ≥‘1)) = ℤ) |
51 | 45, 50 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∪ ℕ) =
ℤ) |
52 | 51 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ (ℕ0 ↑m ((ℤ ∖
(ℤ≥‘(𝑁 + 1))) ∪ ℕ)) =
(ℕ0 ↑m ℤ)) |
53 | 52 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (ℕ0
↑m ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∪ ℕ)) =
(ℕ0 ↑m ℤ)) |
54 | 44, 53 | eleqtrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (𝑑 ∪ 𝑒) ∈ (ℕ0
↑m ℤ)) |
55 | | unidm 4086 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 ∪ 𝑐) = 𝑐 |
56 | 40, 39 | uneq12d 4098 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (𝑐 ∪ 𝑐) = ((𝑑 ↾ (1...𝑁)) ∪ (𝑒 ↾ (1...𝑁)))) |
57 | 55, 56 | eqtr3id 2792 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → 𝑐 = ((𝑑 ↾ (1...𝑁)) ∪ (𝑒 ↾ (1...𝑁)))) |
58 | | resundir 5906 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∪ 𝑒) ↾ (1...𝑁)) = ((𝑑 ↾ (1...𝑁)) ∪ (𝑒 ↾ (1...𝑁))) |
59 | 57, 58 | eqtr4di 2796 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → 𝑐 = ((𝑑 ∪ 𝑒) ↾ (1...𝑁))) |
60 | | uncom 4087 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑑 ∪ 𝑒) = (𝑒 ∪ 𝑑) |
61 | 60 | reseq1i 5887 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑑 ∪ 𝑒) ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) = ((𝑒 ∪ 𝑑) ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) |
62 | | incom 4135 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ℕ
∩ (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) = ((ℤ ∖
(ℤ≥‘(𝑁 + 1))) ∩ ℕ) |
63 | 62, 34 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ0
→ (ℕ ∩ (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) = (1...𝑁)) |
64 | 63 | reseq2d 5891 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ ℕ0
→ (𝑒 ↾ (ℕ
∩ (ℤ ∖ (ℤ≥‘(𝑁 + 1))))) = (𝑒 ↾ (1...𝑁))) |
65 | 64 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (𝑒 ↾ (ℕ ∩ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = (𝑒 ↾ (1...𝑁))) |
66 | 63 | reseq2d 5891 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ0
→ (𝑑 ↾ (ℕ
∩ (ℤ ∖ (ℤ≥‘(𝑁 + 1))))) = (𝑑 ↾ (1...𝑁))) |
67 | 66 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (𝑑 ↾ (ℕ ∩ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = (𝑑 ↾ (1...𝑁))) |
68 | 67, 40, 39 | 3eqtr2d 2784 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (𝑑 ↾ (ℕ ∩ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = (𝑒 ↾ (1...𝑁))) |
69 | 65, 68 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (𝑒 ↾ (ℕ ∩ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = (𝑑 ↾ (ℕ ∩ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))) |
70 | | elmapresaunres2 40593 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑒 ∈ (ℕ0
↑m ℕ) ∧ 𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ (𝑒 ↾ (ℕ ∩ (ℤ
∖ (ℤ≥‘(𝑁 + 1))))) = (𝑑 ↾ (ℕ ∩ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))) → ((𝑒 ∪ 𝑑) ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) = 𝑑) |
71 | 33, 32, 69, 70 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → ((𝑒 ∪ 𝑑) ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) = 𝑑) |
72 | 61, 71 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → ((𝑑 ∪ 𝑒) ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) = 𝑑) |
73 | 72 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (𝑎‘((𝑑 ∪ 𝑒) ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = (𝑎‘𝑑)) |
74 | | simprlr 777 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (𝑎‘𝑑) = 0) |
75 | 73, 74 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (𝑎‘((𝑑 ∪ 𝑒) ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0) |
76 | | elmapresaunres2 40593 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ) ∧ (𝑑 ↾ ((ℤ ∖
(ℤ≥‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ ((ℤ ∖
(ℤ≥‘(𝑁 + 1))) ∩ ℕ))) → ((𝑑 ∪ 𝑒) ↾ ℕ) = 𝑒) |
77 | 32, 33, 42, 76 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → ((𝑑 ∪ 𝑒) ↾ ℕ) = 𝑒) |
78 | 77 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (𝑏‘((𝑑 ∪ 𝑒) ↾ ℕ)) = (𝑏‘𝑒)) |
79 | | simprrr 779 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (𝑏‘𝑒) = 0) |
80 | 78, 79 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (𝑏‘((𝑑 ∪ 𝑒) ↾ ℕ)) = 0) |
81 | 59, 75, 80 | jca32 516 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → (𝑐 = ((𝑑 ∪ 𝑒) ↾ (1...𝑁)) ∧ ((𝑎‘((𝑑 ∪ 𝑒) ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑 ∪ 𝑒) ↾ ℕ)) = 0))) |
82 | | reseq1 5885 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = (𝑑 ∪ 𝑒) → (𝑓 ↾ (1...𝑁)) = ((𝑑 ∪ 𝑒) ↾ (1...𝑁))) |
83 | 82 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝑑 ∪ 𝑒) → (𝑐 = (𝑓 ↾ (1...𝑁)) ↔ 𝑐 = ((𝑑 ∪ 𝑒) ↾ (1...𝑁)))) |
84 | | reseq1 5885 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = (𝑑 ∪ 𝑒) → (𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) = ((𝑑 ∪ 𝑒) ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) |
85 | 84 | fveqeq2d 6782 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = (𝑑 ∪ 𝑒) → ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ↔ (𝑎‘((𝑑 ∪ 𝑒) ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0)) |
86 | | reseq1 5885 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = (𝑑 ∪ 𝑒) → (𝑓 ↾ ℕ) = ((𝑑 ∪ 𝑒) ↾ ℕ)) |
87 | 86 | fveqeq2d 6782 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = (𝑑 ∪ 𝑒) → ((𝑏‘(𝑓 ↾ ℕ)) = 0 ↔ (𝑏‘((𝑑 ∪ 𝑒) ↾ ℕ)) = 0)) |
88 | 85, 87 | anbi12d 631 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝑑 ∪ 𝑒) → (((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ ((𝑎‘((𝑑 ∪ 𝑒) ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑 ∪ 𝑒) ↾ ℕ)) = 0))) |
89 | 83, 88 | anbi12d 631 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝑑 ∪ 𝑒) → ((𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) ↔ (𝑐 = ((𝑑 ∪ 𝑒) ↾ (1...𝑁)) ∧ ((𝑎‘((𝑑 ∪ 𝑒) ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑 ∪ 𝑒) ↾ ℕ)) = 0)))) |
90 | 89 | rspcev 3561 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑑 ∪ 𝑒) ∈ (ℕ0
↑m ℤ) ∧ (𝑐 = ((𝑑 ∪ 𝑒) ↾ (1...𝑁)) ∧ ((𝑎‘((𝑑 ∪ 𝑒) ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑 ∪ 𝑒) ↾ ℕ)) = 0))) →
∃𝑓 ∈
(ℕ0 ↑m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) |
91 | 54, 81, 90 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) → ∃𝑓 ∈ (ℕ0
↑m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) |
92 | 91 | ex 413 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0
↑m ℕ))) → (((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)) → ∃𝑓 ∈ (ℕ0
↑m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))) |
93 | 92 | rexlimdvva 3223 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
(∃𝑑 ∈
(ℕ0 ↑m (ℤ ∖
(ℤ≥‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0
↑m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)) → ∃𝑓 ∈ (ℕ0
↑m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))) |
94 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → 𝑓 ∈ (ℕ0
↑m ℤ)) |
95 | | difss 4066 |
. . . . . . . . . . . . . . . . 17
⊢ (ℤ
∖ (ℤ≥‘(𝑁 + 1))) ⊆ ℤ |
96 | | elmapssres 8655 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ (ℕ0
↑m ℤ) ∧ (ℤ ∖
(ℤ≥‘(𝑁 + 1))) ⊆ ℤ) → (𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))) |
97 | 94, 95, 96 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → (𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))) |
98 | 97 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))) |
99 | | nnssz 12340 |
. . . . . . . . . . . . . . . . 17
⊢ ℕ
⊆ ℤ |
100 | | elmapssres 8655 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ (ℕ0
↑m ℤ) ∧ ℕ ⊆ ℤ) → (𝑓 ↾ ℕ) ∈
(ℕ0 ↑m ℕ)) |
101 | 94, 99, 100 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → (𝑓 ↾ ℕ) ∈ (ℕ0
↑m ℕ)) |
102 | 101 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑓 ↾ ℕ) ∈
(ℕ0 ↑m ℕ)) |
103 | | simprl 768 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → 𝑐 = (𝑓 ↾ (1...𝑁))) |
104 | 14 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (1...𝑁) ⊆ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) |
105 | 104 | resabs1d 5922 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ((𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) ↾ (1...𝑁)) = (𝑓 ↾ (1...𝑁))) |
106 | 103, 105 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → 𝑐 = ((𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) ↾ (1...𝑁))) |
107 | | simprrl 778 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0) |
108 | 106, 107 | jca 512 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑐 = ((𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0)) |
109 | | resabs1 5921 |
. . . . . . . . . . . . . . . . . 18
⊢
((1...𝑁) ⊆
ℕ → ((𝑓 ↾
ℕ) ↾ (1...𝑁)) =
(𝑓 ↾ (1...𝑁))) |
110 | 24, 109 | mp1i 13 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ((𝑓 ↾ ℕ) ↾
(1...𝑁)) = (𝑓 ↾ (1...𝑁))) |
111 | 103, 110 | eqtr4d 2781 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → 𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁))) |
112 | | simprrr 779 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑏‘(𝑓 ↾ ℕ)) = 0) |
113 | 108, 111,
112 | jca32 516 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ((𝑐 = ((𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0) ∧ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) |
114 | | reseq1 5885 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑑 = (𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) → (𝑑 ↾ (1...𝑁)) = ((𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) ↾ (1...𝑁))) |
115 | 114 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = (𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) → (𝑐 = (𝑑 ↾ (1...𝑁)) ↔ 𝑐 = ((𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) ↾ (1...𝑁)))) |
116 | | fveqeq2 6783 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = (𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) → ((𝑎‘𝑑) = 0 ↔ (𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0)) |
117 | 115, 116 | anbi12d 631 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = (𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) → ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ↔ (𝑐 = ((𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0))) |
118 | 117 | anbi1d 630 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = (𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) → (((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)) ↔ ((𝑐 = ((𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)))) |
119 | | reseq1 5885 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = (𝑓 ↾ ℕ) → (𝑒 ↾ (1...𝑁)) = ((𝑓 ↾ ℕ) ↾ (1...𝑁))) |
120 | 119 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = (𝑓 ↾ ℕ) → (𝑐 = (𝑒 ↾ (1...𝑁)) ↔ 𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)))) |
121 | | fveqeq2 6783 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = (𝑓 ↾ ℕ) → ((𝑏‘𝑒) = 0 ↔ (𝑏‘(𝑓 ↾ ℕ)) = 0)) |
122 | 120, 121 | anbi12d 631 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 = (𝑓 ↾ ℕ) → ((𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0) ↔ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) |
123 | 122 | anbi2d 629 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 = (𝑓 ↾ ℕ) → (((𝑐 = ((𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)) ↔ ((𝑐 = ((𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0) ∧ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))) |
124 | 118, 123 | rspc2ev 3572 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ (𝑓 ↾ ℕ) ∈
(ℕ0 ↑m ℕ) ∧ ((𝑐 = ((𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0) ∧ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0
↑m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) |
125 | 98, 102, 113, 124 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0
↑m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))) |
126 | 125 | rexlimdva2 3216 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
(∃𝑓 ∈
(ℕ0 ↑m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) → ∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0
↑m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)))) |
127 | 93, 126 | impbid 211 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
(∃𝑑 ∈
(ℕ0 ↑m (ℤ ∖
(ℤ≥‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0
↑m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)) ↔ ∃𝑓 ∈ (ℕ0
↑m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))) |
128 | | simplrl 774 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → 𝑎 ∈ (mzPoly‘(ℤ ∖
(ℤ≥‘(𝑁 + 1))))) |
129 | | mzpf 40558 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 ∈ (mzPoly‘(ℤ
∖ (ℤ≥‘(𝑁 + 1)))) → 𝑎:(ℤ ↑m (ℤ ∖
(ℤ≥‘(𝑁 + 1))))⟶ℤ) |
130 | 128, 129 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → 𝑎:(ℤ ↑m (ℤ ∖
(ℤ≥‘(𝑁 + 1))))⟶ℤ) |
131 | | nn0ssz 12341 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
ℕ0 ⊆ ℤ |
132 | | mapss 8677 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℤ
∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0
↑m ℤ) ⊆ (ℤ ↑m
ℤ)) |
133 | 3, 131, 132 | mp2an 689 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(ℕ0 ↑m ℤ) ⊆ (ℤ
↑m ℤ) |
134 | 133 | sseli 3917 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ (ℕ0
↑m ℤ) → 𝑓 ∈ (ℤ ↑m
ℤ)) |
135 | | elmapssres 8655 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ (ℤ
↑m ℤ) ∧ (ℤ ∖
(ℤ≥‘(𝑁 + 1))) ⊆ ℤ) → (𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) ∈ (ℤ ↑m
(ℤ ∖ (ℤ≥‘(𝑁 + 1))))) |
136 | 134, 95, 135 | sylancl 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ (ℕ0
↑m ℤ) → (𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) ∈ (ℤ ↑m
(ℤ ∖ (ℤ≥‘(𝑁 + 1))))) |
137 | 136 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → (𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) ∈ (ℤ ↑m
(ℤ ∖ (ℤ≥‘(𝑁 + 1))))) |
138 | 130, 137 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → (𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) ∈ ℤ) |
139 | 138 | zred 12426 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → (𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) ∈ ℝ) |
140 | | simplrr 775 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → 𝑏 ∈
(mzPoly‘ℕ)) |
141 | | mzpf 40558 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∈ (mzPoly‘ℕ)
→ 𝑏:(ℤ
↑m ℕ)⟶ℤ) |
142 | 140, 141 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → 𝑏:(ℤ ↑m
ℕ)⟶ℤ) |
143 | | elmapssres 8655 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ (ℤ
↑m ℤ) ∧ ℕ ⊆ ℤ) → (𝑓 ↾ ℕ) ∈
(ℤ ↑m ℕ)) |
144 | 134, 99, 143 | sylancl 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ (ℕ0
↑m ℤ) → (𝑓 ↾ ℕ) ∈ (ℤ
↑m ℕ)) |
145 | 144 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → (𝑓 ↾ ℕ) ∈ (ℤ
↑m ℕ)) |
146 | 142, 145 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → (𝑏‘(𝑓 ↾ ℕ)) ∈
ℤ) |
147 | 146 | zred 12426 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → (𝑏‘(𝑓 ↾ ℕ)) ∈
ℝ) |
148 | | sumsqeq0 13896 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) ∈ ℝ ∧ (𝑏‘(𝑓 ↾ ℕ)) ∈ ℝ) →
(((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ (((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) =
0)) |
149 | 139, 147,
148 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → (((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ (((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) =
0)) |
150 | 134 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → 𝑓 ∈ (ℤ ↑m
ℤ)) |
151 | | reseq1 5885 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = 𝑓 → (𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))) = (𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) |
152 | 151 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = 𝑓 → (𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = (𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))) |
153 | 152 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = 𝑓 → ((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) = ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2)) |
154 | | reseq1 5885 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = 𝑓 → (𝑔 ↾ ℕ) = (𝑓 ↾ ℕ)) |
155 | 154 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = 𝑓 → (𝑏‘(𝑔 ↾ ℕ)) = (𝑏‘(𝑓 ↾ ℕ))) |
156 | 155 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = 𝑓 → ((𝑏‘(𝑔 ↾ ℕ))↑2) = ((𝑏‘(𝑓 ↾ ℕ))↑2)) |
157 | 153, 156 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = 𝑓 → (((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)) = (((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2))) |
158 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 ∈ (ℤ
↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) = (𝑔 ∈ (ℤ
↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) |
159 | | ovex 7308 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) ∈
V |
160 | 157, 158,
159 | fvmpt 6875 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ (ℤ
↑m ℤ) → ((𝑔 ∈ (ℤ ↑m ℤ)
↦ (((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = (((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2))) |
161 | 150, 160 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → ((𝑔 ∈ (ℤ ↑m ℤ)
↦ (((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = (((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2))) |
162 | 161 | eqeq1d 2740 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → (((𝑔 ∈ (ℤ ↑m ℤ)
↦ (((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0 ↔ (((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) =
0)) |
163 | 149, 162 | bitr4d 281 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → (((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ ((𝑔 ∈ (ℤ
↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)) |
164 | 163 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0
↑m ℤ)) → ((𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) ↔ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ)
↦ (((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0))) |
165 | 164 | rexbidva 3225 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
(∃𝑓 ∈
(ℕ0 ↑m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) ↔ ∃𝑓 ∈ (ℕ0
↑m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ)
↦ (((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0))) |
166 | 127, 165 | bitrd 278 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
(∃𝑑 ∈
(ℕ0 ↑m (ℤ ∖
(ℤ≥‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0
↑m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)) ↔ ∃𝑓 ∈ (ℕ0
↑m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ)
↦ (((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0))) |
167 | 31, 166 | bitr3id 285 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
((∃𝑑 ∈
(ℕ0 ↑m (ℤ ∖
(ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)) ↔ ∃𝑓 ∈ (ℕ0
↑m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ)
↦ (((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0))) |
168 | 167 | abbidv 2807 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
{𝑐 ∣ (∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0))} = {𝑐 ∣ ∃𝑓 ∈ (ℕ0
↑m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ)
↦ (((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)}) |
169 | 30, 168 | eqtrid 2790 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
({𝑐 ∣ ∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)}) = {𝑐 ∣ ∃𝑓 ∈ (ℕ0
↑m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ)
↦ (((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)}) |
170 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → 𝑁 ∈
ℕ0) |
171 | | fzssuz 13297 |
. . . . . . . . . . . 12
⊢
(1...𝑁) ⊆
(ℤ≥‘1) |
172 | | uzssz 12603 |
. . . . . . . . . . . 12
⊢
(ℤ≥‘1) ⊆ ℤ |
173 | 171, 172 | sstri 3930 |
. . . . . . . . . . 11
⊢
(1...𝑁) ⊆
ℤ |
174 | 3, 173 | pm3.2i 471 |
. . . . . . . . . 10
⊢ (ℤ
∈ V ∧ (1...𝑁)
⊆ ℤ) |
175 | 174 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
(ℤ ∈ V ∧ (1...𝑁) ⊆ ℤ)) |
176 | 3 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
ℤ ∈ V) |
177 | 95 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
(ℤ ∖ (ℤ≥‘(𝑁 + 1))) ⊆ ℤ) |
178 | | simprl 768 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → 𝑎 ∈ (mzPoly‘(ℤ
∖ (ℤ≥‘(𝑁 + 1))))) |
179 | | mzpresrename 40572 |
. . . . . . . . . . . 12
⊢ ((ℤ
∈ V ∧ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ⊆ ℤ ∧
𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1))))) → (𝑔 ∈ (ℤ ↑m ℤ)
↦ (𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))) ∈
(mzPoly‘ℤ)) |
180 | 176, 177,
178, 179 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
(𝑔 ∈ (ℤ
↑m ℤ) ↦ (𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))) ∈
(mzPoly‘ℤ)) |
181 | | 2nn0 12250 |
. . . . . . . . . . 11
⊢ 2 ∈
ℕ0 |
182 | | mzpexpmpt 40567 |
. . . . . . . . . . 11
⊢ (((𝑔 ∈ (ℤ
↑m ℤ) ↦ (𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))) ∈ (mzPoly‘ℤ)
∧ 2 ∈ ℕ0) → (𝑔 ∈ (ℤ ↑m ℤ)
↦ ((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2)) ∈
(mzPoly‘ℤ)) |
183 | 180, 181,
182 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
(𝑔 ∈ (ℤ
↑m ℤ) ↦ ((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2)) ∈
(mzPoly‘ℤ)) |
184 | 99 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
ℕ ⊆ ℤ) |
185 | | simprr 770 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → 𝑏 ∈
(mzPoly‘ℕ)) |
186 | | mzpresrename 40572 |
. . . . . . . . . . . 12
⊢ ((ℤ
∈ V ∧ ℕ ⊆ ℤ ∧ 𝑏 ∈ (mzPoly‘ℕ)) → (𝑔 ∈ (ℤ
↑m ℤ) ↦ (𝑏‘(𝑔 ↾ ℕ))) ∈
(mzPoly‘ℤ)) |
187 | 176, 184,
185, 186 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
(𝑔 ∈ (ℤ
↑m ℤ) ↦ (𝑏‘(𝑔 ↾ ℕ))) ∈
(mzPoly‘ℤ)) |
188 | | mzpexpmpt 40567 |
. . . . . . . . . . 11
⊢ (((𝑔 ∈ (ℤ
↑m ℤ) ↦ (𝑏‘(𝑔 ↾ ℕ))) ∈
(mzPoly‘ℤ) ∧ 2 ∈ ℕ0) → (𝑔 ∈ (ℤ
↑m ℤ) ↦ ((𝑏‘(𝑔 ↾ ℕ))↑2)) ∈
(mzPoly‘ℤ)) |
189 | 187, 181,
188 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
(𝑔 ∈ (ℤ
↑m ℤ) ↦ ((𝑏‘(𝑔 ↾ ℕ))↑2)) ∈
(mzPoly‘ℤ)) |
190 | | mzpaddmpt 40563 |
. . . . . . . . . 10
⊢ (((𝑔 ∈ (ℤ
↑m ℤ) ↦ ((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2)) ∈
(mzPoly‘ℤ) ∧ (𝑔 ∈ (ℤ ↑m ℤ)
↦ ((𝑏‘(𝑔 ↾ ℕ))↑2))
∈ (mzPoly‘ℤ)) → (𝑔 ∈ (ℤ ↑m ℤ)
↦ (((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) ∈
(mzPoly‘ℤ)) |
191 | 183, 189,
190 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
(𝑔 ∈ (ℤ
↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) ∈
(mzPoly‘ℤ)) |
192 | | eldioph2 40584 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (ℤ ∈ V ∧ (1...𝑁) ⊆ ℤ) ∧ (𝑔 ∈ (ℤ ↑m ℤ)
↦ (((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) ∈
(mzPoly‘ℤ)) → {𝑐 ∣ ∃𝑓 ∈ (ℕ0
↑m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ)
↦ (((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)} ∈
(Dioph‘𝑁)) |
193 | 170, 175,
191, 192 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
{𝑐 ∣ ∃𝑓 ∈ (ℕ0
↑m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ)
↦ (((𝑎‘(𝑔 ↾ (ℤ ∖
(ℤ≥‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)} ∈
(Dioph‘𝑁)) |
194 | 169, 193 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
({𝑐 ∣ ∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)}) ∈ (Dioph‘𝑁)) |
195 | | ineq12 4141 |
. . . . . . . 8
⊢ ((𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)}) → (𝐴 ∩ 𝐵) = ({𝑐 ∣ ∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)})) |
196 | 195 | eleq1d 2823 |
. . . . . . 7
⊢ ((𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)}) → ((𝐴 ∩ 𝐵) ∈ (Dioph‘𝑁) ↔ ({𝑐 ∣ ∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)}) ∈ (Dioph‘𝑁))) |
197 | 194, 196 | syl5ibrcom 246 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) →
((𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)}) → (𝐴 ∩ 𝐵) ∈ (Dioph‘𝑁))) |
198 | 197 | rexlimdvva 3223 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (∃𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1))))∃𝑏 ∈ (mzPoly‘ℕ)(𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)}) → (𝐴 ∩ 𝐵) ∈ (Dioph‘𝑁))) |
199 | 29, 198 | syl5bir 242 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ((∃𝑎 ∈
(mzPoly‘(ℤ ∖ (ℤ≥‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0
↑m (ℤ ∖ (ℤ≥‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∧ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0
↑m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏‘𝑒) = 0)}) → (𝐴 ∩ 𝐵) ∈ (Dioph‘𝑁))) |
200 | 28, 199 | sylbid 239 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ((𝐴 ∈
(Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴 ∩ 𝐵) ∈ (Dioph‘𝑁))) |
201 | 1, 200 | syl 17 |
. 2
⊢ (𝐴 ∈ (Dioph‘𝑁) → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴 ∩ 𝐵) ∈ (Dioph‘𝑁))) |
202 | 201 | anabsi5 666 |
1
⊢ ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴 ∩ 𝐵) ∈ (Dioph‘𝑁)) |