Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophin Structured version   Visualization version   GIF version

Theorem diophin 40510
Description: If two sets are Diophantine, so is their intersection. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
diophin ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))

Proof of Theorem diophin
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 40502 . . 3 (𝐴 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0)
2 id 22 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
3 zex 12258 . . . . . . 7 ℤ ∈ V
4 difexg 5246 . . . . . . 7 (ℤ ∈ V → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
53, 4mp1i 13 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
6 ominf 8964 . . . . . . 7 ¬ ω ∈ Fin
7 nn0z 12273 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
8 lzenom 40508 . . . . . . . 8 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)
9 enfi 8933 . . . . . . . 8 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin ↔ ω ∈ Fin))
107, 8, 93syl 18 . . . . . . 7 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin ↔ ω ∈ Fin))
116, 10mtbiri 326 . . . . . 6 (𝑁 ∈ ℕ0 → ¬ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin)
12 fz1eqin 40507 . . . . . . 7 (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))
13 inss1 4159 . . . . . . 7 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1)))
1412, 13eqsstrdi 3971 . . . . . 6 (𝑁 ∈ ℕ0 → (1...𝑁) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1))))
15 eldioph2b 40501 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V) ∧ (¬ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin ∧ (1...𝑁) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1))))) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)}))
162, 5, 11, 14, 15syl22anc 835 . . . . 5 (𝑁 ∈ ℕ0 → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)}))
17 nnex 11909 . . . . . . 7 ℕ ∈ V
1817a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → ℕ ∈ V)
19 1z 12280 . . . . . . 7 1 ∈ ℤ
20 nnuz 12550 . . . . . . . 8 ℕ = (ℤ‘1)
2120uzinf 13613 . . . . . . 7 (1 ∈ ℤ → ¬ ℕ ∈ Fin)
2219, 21mp1i 13 . . . . . 6 (𝑁 ∈ ℕ0 → ¬ ℕ ∈ Fin)
23 elfznn 13214 . . . . . . . 8 (𝑎 ∈ (1...𝑁) → 𝑎 ∈ ℕ)
2423ssriv 3921 . . . . . . 7 (1...𝑁) ⊆ ℕ
2524a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → (1...𝑁) ⊆ ℕ)
26 eldioph2b 40501 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → (𝐵 ∈ (Dioph‘𝑁) ↔ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
272, 18, 22, 25, 26syl22anc 835 . . . . 5 (𝑁 ∈ ℕ0 → (𝐵 ∈ (Dioph‘𝑁) ↔ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
2816, 27anbi12d 630 . . . 4 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) ↔ (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)})))
29 reeanv 3292 . . . . 5 (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑏 ∈ (mzPoly‘ℕ)(𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) ↔ (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
30 inab 4230 . . . . . . . . 9 ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) = {𝑐 ∣ (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))}
31 reeanv 3292 . . . . . . . . . . 11 (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)))
32 simplrl 773 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
33 simplrr 774 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑒 ∈ (ℕ0m ℕ))
3412eqcomd 2744 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ) = (1...𝑁))
3534reseq2d 5880 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑑 ↾ (1...𝑁)))
3635ad3antrrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑑 ↾ (1...𝑁)))
3734reseq2d 5880 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ (1...𝑁)))
3837ad3antrrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ (1...𝑁)))
39 simprrl 777 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = (𝑒 ↾ (1...𝑁)))
40 simprll 775 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = (𝑑 ↾ (1...𝑁)))
4138, 39, 403eqtr2d 2784 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑑 ↾ (1...𝑁)))
4236, 41eqtr4d 2781 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)))
43 elmapresaun 8626 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ) ∧ (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))) → (𝑑𝑒) ∈ (ℕ0m ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)))
4432, 33, 42, 43syl3anc 1369 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑𝑒) ∈ (ℕ0m ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)))
4520uneq2i 4090 . . . . . . . . . . . . . . . . . . . 20 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ (ℤ‘1))
4619a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 1 ∈ ℤ)
47 nn0p1nn 12202 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
4847nnge1d 11951 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 1 ≤ (𝑁 + 1))
49 lzunuz 40506 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ ∧ 1 ≤ (𝑁 + 1)) → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ (ℤ‘1)) = ℤ)
507, 46, 48, 49syl3anc 1369 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ (ℤ‘1)) = ℤ)
5145, 50syl5eq 2791 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ) = ℤ)
5251oveq2d 7271 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (ℕ0m ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)) = (ℕ0m ℤ))
5352ad3antrrr 726 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (ℕ0m ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)) = (ℕ0m ℤ))
5444, 53eleqtrd 2841 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑𝑒) ∈ (ℕ0m ℤ))
55 unidm 4082 . . . . . . . . . . . . . . . . . . 19 (𝑐𝑐) = 𝑐
5640, 39uneq12d 4094 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑐𝑐) = ((𝑑 ↾ (1...𝑁)) ∪ (𝑒 ↾ (1...𝑁))))
5755, 56eqtr3id 2793 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = ((𝑑 ↾ (1...𝑁)) ∪ (𝑒 ↾ (1...𝑁))))
58 resundir 5895 . . . . . . . . . . . . . . . . . 18 ((𝑑𝑒) ↾ (1...𝑁)) = ((𝑑 ↾ (1...𝑁)) ∪ (𝑒 ↾ (1...𝑁)))
5957, 58eqtr4di 2797 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = ((𝑑𝑒) ↾ (1...𝑁)))
60 uncom 4083 . . . . . . . . . . . . . . . . . . . . 21 (𝑑𝑒) = (𝑒𝑑)
6160reseq1i 5876 . . . . . . . . . . . . . . . . . . . 20 ((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = ((𝑒𝑑) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))
62 incom 4131 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)
6362, 34syl5eq 2791 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0 → (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = (1...𝑁))
6463reseq2d 5880 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑒 ↾ (1...𝑁)))
6564ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑒 ↾ (1...𝑁)))
6663reseq2d 5880 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0 → (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (1...𝑁)))
6766ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (1...𝑁)))
6867, 40, 393eqtr2d 2784 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑒 ↾ (1...𝑁)))
6965, 68eqtr4d 2781 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))))
70 elmapresaunres2 40509 . . . . . . . . . . . . . . . . . . . . 21 ((𝑒 ∈ (ℕ0m ℕ) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) → ((𝑒𝑑) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = 𝑑)
7133, 32, 69, 70syl3anc 1369 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ((𝑒𝑑) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = 𝑑)
7261, 71syl5eq 2791 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = 𝑑)
7372fveq2d 6760 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑎𝑑))
74 simprlr 776 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑎𝑑) = 0)
7573, 74eqtrd 2778 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0)
76 elmapresaunres2 40509 . . . . . . . . . . . . . . . . . . . 20 ((𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ) ∧ (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))) → ((𝑑𝑒) ↾ ℕ) = 𝑒)
7732, 33, 42, 76syl3anc 1369 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ((𝑑𝑒) ↾ ℕ) = 𝑒)
7877fveq2d 6760 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑏‘((𝑑𝑒) ↾ ℕ)) = (𝑏𝑒))
79 simprrr 778 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑏𝑒) = 0)
8078, 79eqtrd 2778 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0)
8159, 75, 80jca32 515 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑐 = ((𝑑𝑒) ↾ (1...𝑁)) ∧ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0)))
82 reseq1 5874 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑑𝑒) → (𝑓 ↾ (1...𝑁)) = ((𝑑𝑒) ↾ (1...𝑁)))
8382eqeq2d 2749 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑑𝑒) → (𝑐 = (𝑓 ↾ (1...𝑁)) ↔ 𝑐 = ((𝑑𝑒) ↾ (1...𝑁))))
84 reseq1 5874 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑑𝑒) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = ((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))
8584fveqeq2d 6764 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑑𝑒) → ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ↔ (𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0))
86 reseq1 5874 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑑𝑒) → (𝑓 ↾ ℕ) = ((𝑑𝑒) ↾ ℕ))
8786fveqeq2d 6764 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑑𝑒) → ((𝑏‘(𝑓 ↾ ℕ)) = 0 ↔ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0))
8885, 87anbi12d 630 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑑𝑒) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0)))
8983, 88anbi12d 630 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑑𝑒) → ((𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) ↔ (𝑐 = ((𝑑𝑒) ↾ (1...𝑁)) ∧ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0))))
9089rspcev 3552 . . . . . . . . . . . . . . . 16 (((𝑑𝑒) ∈ (ℕ0m ℤ) ∧ (𝑐 = ((𝑑𝑒) ↾ (1...𝑁)) ∧ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0))) → ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
9154, 81, 90syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
9291ex 412 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) → (((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) → ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
9392rexlimdvva 3222 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) → ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
94 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑓 ∈ (ℕ0m ℤ))
95 difss 4062 . . . . . . . . . . . . . . . . 17 (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ
96 elmapssres 8613 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (ℕ0m ℤ) ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
9794, 95, 96sylancl 585 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
9897adantr 480 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
99 nnssz 12270 . . . . . . . . . . . . . . . . 17 ℕ ⊆ ℤ
100 elmapssres 8613 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (ℕ0m ℤ) ∧ ℕ ⊆ ℤ) → (𝑓 ↾ ℕ) ∈ (ℕ0m ℕ))
10194, 99, 100sylancl 585 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑓 ↾ ℕ) ∈ (ℕ0m ℕ))
102101adantr 480 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑓 ↾ ℕ) ∈ (ℕ0m ℕ))
103 simprl 767 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → 𝑐 = (𝑓 ↾ (1...𝑁)))
10414ad3antrrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (1...𝑁) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1))))
105104resabs1d 5911 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) = (𝑓 ↾ (1...𝑁)))
106103, 105eqtr4d 2781 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → 𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)))
107 simprrl 777 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0)
108106, 107jca 511 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0))
109 resabs1 5910 . . . . . . . . . . . . . . . . . 18 ((1...𝑁) ⊆ ℕ → ((𝑓 ↾ ℕ) ↾ (1...𝑁)) = (𝑓 ↾ (1...𝑁)))
11024, 109mp1i 13 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ((𝑓 ↾ ℕ) ↾ (1...𝑁)) = (𝑓 ↾ (1...𝑁)))
111103, 110eqtr4d 2781 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → 𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)))
112 simprrr 778 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑏‘(𝑓 ↾ ℕ)) = 0)
113108, 111, 112jca32 515 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
114 reseq1 5874 . . . . . . . . . . . . . . . . . . 19 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → (𝑑 ↾ (1...𝑁)) = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)))
115114eqeq2d 2749 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → (𝑐 = (𝑑 ↾ (1...𝑁)) ↔ 𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁))))
116 fveqeq2 6765 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → ((𝑎𝑑) = 0 ↔ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0))
117115, 116anbi12d 630 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ↔ (𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0)))
118117anbi1d 629 . . . . . . . . . . . . . . . 16 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → (((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))))
119 reseq1 5874 . . . . . . . . . . . . . . . . . . 19 (𝑒 = (𝑓 ↾ ℕ) → (𝑒 ↾ (1...𝑁)) = ((𝑓 ↾ ℕ) ↾ (1...𝑁)))
120119eqeq2d 2749 . . . . . . . . . . . . . . . . . 18 (𝑒 = (𝑓 ↾ ℕ) → (𝑐 = (𝑒 ↾ (1...𝑁)) ↔ 𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁))))
121 fveqeq2 6765 . . . . . . . . . . . . . . . . . 18 (𝑒 = (𝑓 ↾ ℕ) → ((𝑏𝑒) = 0 ↔ (𝑏‘(𝑓 ↾ ℕ)) = 0))
122120, 121anbi12d 630 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝑓 ↾ ℕ) → ((𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0) ↔ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
123122anbi2d 628 . . . . . . . . . . . . . . . 16 (𝑒 = (𝑓 ↾ ℕ) → (((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
124118, 123rspc2ev 3564 . . . . . . . . . . . . . . 15 (((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ (𝑓 ↾ ℕ) ∈ (ℕ0m ℕ) ∧ ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)))
12598, 102, 113, 124syl3anc 1369 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)))
126125rexlimdva2 3215 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) → ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))))
12793, 126impbid 211 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
128 simplrl 773 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))))
129 mzpf 40474 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) → 𝑎:(ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1))))⟶ℤ)
130128, 129syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑎:(ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1))))⟶ℤ)
131 nn0ssz 12271 . . . . . . . . . . . . . . . . . . . . . 22 0 ⊆ ℤ
132 mapss 8635 . . . . . . . . . . . . . . . . . . . . . 22 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0m ℤ) ⊆ (ℤ ↑m ℤ))
1333, 131, 132mp2an 688 . . . . . . . . . . . . . . . . . . . . 21 (ℕ0m ℤ) ⊆ (ℤ ↑m ℤ)
134133sseli 3913 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (ℕ0m ℤ) → 𝑓 ∈ (ℤ ↑m ℤ))
135 elmapssres 8613 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (ℤ ↑m ℤ) ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
136134, 95, 135sylancl 585 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (ℕ0m ℤ) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
137136adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
138130, 137ffvelrnd 6944 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) ∈ ℤ)
139138zred 12355 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) ∈ ℝ)
140 simplrr 774 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑏 ∈ (mzPoly‘ℕ))
141 mzpf 40474 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ (mzPoly‘ℕ) → 𝑏:(ℤ ↑m ℕ)⟶ℤ)
142140, 141syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑏:(ℤ ↑m ℕ)⟶ℤ)
143 elmapssres 8613 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (ℤ ↑m ℤ) ∧ ℕ ⊆ ℤ) → (𝑓 ↾ ℕ) ∈ (ℤ ↑m ℕ))
144134, 99, 143sylancl 585 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (ℕ0m ℤ) → (𝑓 ↾ ℕ) ∈ (ℤ ↑m ℕ))
145144adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑓 ↾ ℕ) ∈ (ℤ ↑m ℕ))
146142, 145ffvelrnd 6944 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑏‘(𝑓 ↾ ℕ)) ∈ ℤ)
147146zred 12355 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑏‘(𝑓 ↾ ℕ)) ∈ ℝ)
148 sumsqeq0 13824 . . . . . . . . . . . . . . . 16 (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) ∈ ℝ ∧ (𝑏‘(𝑓 ↾ ℕ)) ∈ ℝ) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) = 0))
149139, 147, 148syl2anc 583 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) = 0))
150134adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑓 ∈ (ℤ ↑m ℤ))
151 reseq1 5874 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑓 → (𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))
152151fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑓 → (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))))
153152oveq1d 7270 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) = ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2))
154 reseq1 5874 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑓 → (𝑔 ↾ ℕ) = (𝑓 ↾ ℕ))
155154fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑓 → (𝑏‘(𝑔 ↾ ℕ)) = (𝑏‘(𝑓 ↾ ℕ)))
156155oveq1d 7270 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → ((𝑏‘(𝑔 ↾ ℕ))↑2) = ((𝑏‘(𝑓 ↾ ℕ))↑2))
157153, 156oveq12d 7273 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑓 → (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)) = (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)))
158 eqid 2738 . . . . . . . . . . . . . . . . . 18 (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) = (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))
159 ovex 7288 . . . . . . . . . . . . . . . . . 18 (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) ∈ V
160157, 158, 159fvmpt 6857 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (ℤ ↑m ℤ) → ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)))
161150, 160syl 17 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)))
162161eqeq1d 2740 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0 ↔ (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) = 0))
163149, 162bitr4d 281 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0))
164163anbi2d 628 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → ((𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) ↔ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
165164rexbidva 3224 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) ↔ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
166127, 165bitrd 278 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
16731, 166bitr3id 284 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ((∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
168167abbidv 2808 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → {𝑐 ∣ (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))} = {𝑐 ∣ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)})
16930, 168syl5eq 2791 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) = {𝑐 ∣ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)})
170 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → 𝑁 ∈ ℕ0)
171 fzssuz 13226 . . . . . . . . . . . 12 (1...𝑁) ⊆ (ℤ‘1)
172 uzssz 12532 . . . . . . . . . . . 12 (ℤ‘1) ⊆ ℤ
173171, 172sstri 3926 . . . . . . . . . . 11 (1...𝑁) ⊆ ℤ
1743, 173pm3.2i 470 . . . . . . . . . 10 (ℤ ∈ V ∧ (1...𝑁) ⊆ ℤ)
175174a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (ℤ ∈ V ∧ (1...𝑁) ⊆ ℤ))
1763a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ℤ ∈ V)
17795a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ)
178 simprl 767 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → 𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))))
179 mzpresrename 40488 . . . . . . . . . . . 12 ((ℤ ∈ V ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ ∧ 𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) ∈ (mzPoly‘ℤ))
180176, 177, 178, 179syl3anc 1369 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) ∈ (mzPoly‘ℤ))
181 2nn0 12180 . . . . . . . . . . 11 2 ∈ ℕ0
182 mzpexpmpt 40483 . . . . . . . . . . 11 (((𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) ∈ (mzPoly‘ℤ) ∧ 2 ∈ ℕ0) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2)) ∈ (mzPoly‘ℤ))
183180, 181, 182sylancl 585 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2)) ∈ (mzPoly‘ℤ))
18499a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ℕ ⊆ ℤ)
185 simprr 769 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → 𝑏 ∈ (mzPoly‘ℕ))
186 mzpresrename 40488 . . . . . . . . . . . 12 ((ℤ ∈ V ∧ ℕ ⊆ ℤ ∧ 𝑏 ∈ (mzPoly‘ℕ)) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑏‘(𝑔 ↾ ℕ))) ∈ (mzPoly‘ℤ))
187176, 184, 185, 186syl3anc 1369 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑏‘(𝑔 ↾ ℕ))) ∈ (mzPoly‘ℤ))
188 mzpexpmpt 40483 . . . . . . . . . . 11 (((𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑏‘(𝑔 ↾ ℕ))) ∈ (mzPoly‘ℤ) ∧ 2 ∈ ℕ0) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑏‘(𝑔 ↾ ℕ))↑2)) ∈ (mzPoly‘ℤ))
189187, 181, 188sylancl 585 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑏‘(𝑔 ↾ ℕ))↑2)) ∈ (mzPoly‘ℤ))
190 mzpaddmpt 40479 . . . . . . . . . 10 (((𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2)) ∈ (mzPoly‘ℤ) ∧ (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑏‘(𝑔 ↾ ℕ))↑2)) ∈ (mzPoly‘ℤ)) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) ∈ (mzPoly‘ℤ))
191183, 189, 190syl2anc 583 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) ∈ (mzPoly‘ℤ))
192 eldioph2 40500 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (ℤ ∈ V ∧ (1...𝑁) ⊆ ℤ) ∧ (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) ∈ (mzPoly‘ℤ)) → {𝑐 ∣ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)} ∈ (Dioph‘𝑁))
193170, 175, 191, 192syl3anc 1369 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → {𝑐 ∣ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)} ∈ (Dioph‘𝑁))
194169, 193eqeltrd 2839 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) ∈ (Dioph‘𝑁))
195 ineq12 4138 . . . . . . . 8 ((𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) = ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
196195eleq1d 2823 . . . . . . 7 ((𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → ((𝐴𝐵) ∈ (Dioph‘𝑁) ↔ ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) ∈ (Dioph‘𝑁)))
197194, 196syl5ibrcom 246 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ((𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
198197rexlimdvva 3222 . . . . 5 (𝑁 ∈ ℕ0 → (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑏 ∈ (mzPoly‘ℕ)(𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
19929, 198syl5bir 242 . . . 4 (𝑁 ∈ ℕ0 → ((∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
20028, 199sylbid 239 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
2011, 200syl 17 . 2 (𝐴 ∈ (Dioph‘𝑁) → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
202201anabsi5 665 1 ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883   class class class wbr 5070  cmpt 5153  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  ωcom 7687  m cmap 8573  cen 8688  Fincfn 8691  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  cle 10941  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  cexp 13710  mzPolycmzp 40460  Diophcdioph 40493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-exp 13711  df-hash 13973  df-mzpcl 40461  df-mzp 40462  df-dioph 40494
This theorem is referenced by:  anrabdioph  40518
  Copyright terms: Public domain W3C validator