Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophin Structured version   Visualization version   GIF version

Theorem diophin 42733
Description: If two sets are Diophantine, so is their intersection. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
diophin ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))

Proof of Theorem diophin
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 42725 . . 3 (𝐴 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0)
2 id 22 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
3 zex 12514 . . . . . . 7 ℤ ∈ V
4 difexg 5279 . . . . . . 7 (ℤ ∈ V → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
53, 4mp1i 13 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
6 ominf 9181 . . . . . . 7 ¬ ω ∈ Fin
7 nn0z 12530 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
8 lzenom 42731 . . . . . . . 8 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)
9 enfi 9128 . . . . . . . 8 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin ↔ ω ∈ Fin))
107, 8, 93syl 18 . . . . . . 7 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin ↔ ω ∈ Fin))
116, 10mtbiri 327 . . . . . 6 (𝑁 ∈ ℕ0 → ¬ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin)
12 fz1eqin 42730 . . . . . . 7 (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))
13 inss1 4196 . . . . . . 7 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1)))
1412, 13eqsstrdi 3988 . . . . . 6 (𝑁 ∈ ℕ0 → (1...𝑁) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1))))
15 eldioph2b 42724 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V) ∧ (¬ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin ∧ (1...𝑁) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1))))) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)}))
162, 5, 11, 14, 15syl22anc 838 . . . . 5 (𝑁 ∈ ℕ0 → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)}))
17 nnex 12168 . . . . . . 7 ℕ ∈ V
1817a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → ℕ ∈ V)
19 1z 12539 . . . . . . 7 1 ∈ ℤ
20 nnuz 12812 . . . . . . . 8 ℕ = (ℤ‘1)
2120uzinf 13906 . . . . . . 7 (1 ∈ ℤ → ¬ ℕ ∈ Fin)
2219, 21mp1i 13 . . . . . 6 (𝑁 ∈ ℕ0 → ¬ ℕ ∈ Fin)
23 elfznn 13490 . . . . . . . 8 (𝑎 ∈ (1...𝑁) → 𝑎 ∈ ℕ)
2423ssriv 3947 . . . . . . 7 (1...𝑁) ⊆ ℕ
2524a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → (1...𝑁) ⊆ ℕ)
26 eldioph2b 42724 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → (𝐵 ∈ (Dioph‘𝑁) ↔ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
272, 18, 22, 25, 26syl22anc 838 . . . . 5 (𝑁 ∈ ℕ0 → (𝐵 ∈ (Dioph‘𝑁) ↔ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
2816, 27anbi12d 632 . . . 4 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) ↔ (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)})))
29 reeanv 3207 . . . . 5 (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑏 ∈ (mzPoly‘ℕ)(𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) ↔ (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
30 inab 4268 . . . . . . . . 9 ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) = {𝑐 ∣ (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))}
31 reeanv 3207 . . . . . . . . . . 11 (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)))
32 simplrl 776 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
33 simplrr 777 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑒 ∈ (ℕ0m ℕ))
3412eqcomd 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ) = (1...𝑁))
3534reseq2d 5939 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑑 ↾ (1...𝑁)))
3635ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑑 ↾ (1...𝑁)))
3734reseq2d 5939 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ (1...𝑁)))
3837ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ (1...𝑁)))
39 simprrl 780 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = (𝑒 ↾ (1...𝑁)))
40 simprll 778 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = (𝑑 ↾ (1...𝑁)))
4138, 39, 403eqtr2d 2770 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑑 ↾ (1...𝑁)))
4236, 41eqtr4d 2767 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)))
43 elmapresaun 8830 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ) ∧ (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))) → (𝑑𝑒) ∈ (ℕ0m ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)))
4432, 33, 42, 43syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑𝑒) ∈ (ℕ0m ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)))
4520uneq2i 4124 . . . . . . . . . . . . . . . . . . . 20 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ (ℤ‘1))
4619a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 1 ∈ ℤ)
47 nn0p1nn 12457 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
4847nnge1d 12210 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 1 ≤ (𝑁 + 1))
49 lzunuz 42729 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ ∧ 1 ≤ (𝑁 + 1)) → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ (ℤ‘1)) = ℤ)
507, 46, 48, 49syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ (ℤ‘1)) = ℤ)
5145, 50eqtrid 2776 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ) = ℤ)
5251oveq2d 7385 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (ℕ0m ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)) = (ℕ0m ℤ))
5352ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (ℕ0m ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)) = (ℕ0m ℤ))
5444, 53eleqtrd 2830 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑𝑒) ∈ (ℕ0m ℤ))
55 unidm 4116 . . . . . . . . . . . . . . . . . . 19 (𝑐𝑐) = 𝑐
5640, 39uneq12d 4128 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑐𝑐) = ((𝑑 ↾ (1...𝑁)) ∪ (𝑒 ↾ (1...𝑁))))
5755, 56eqtr3id 2778 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = ((𝑑 ↾ (1...𝑁)) ∪ (𝑒 ↾ (1...𝑁))))
58 resundir 5954 . . . . . . . . . . . . . . . . . 18 ((𝑑𝑒) ↾ (1...𝑁)) = ((𝑑 ↾ (1...𝑁)) ∪ (𝑒 ↾ (1...𝑁)))
5957, 58eqtr4di 2782 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = ((𝑑𝑒) ↾ (1...𝑁)))
60 uncom 4117 . . . . . . . . . . . . . . . . . . . . 21 (𝑑𝑒) = (𝑒𝑑)
6160reseq1i 5935 . . . . . . . . . . . . . . . . . . . 20 ((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = ((𝑒𝑑) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))
62 incom 4168 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)
6362, 34eqtrid 2776 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0 → (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = (1...𝑁))
6463reseq2d 5939 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑒 ↾ (1...𝑁)))
6564ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑒 ↾ (1...𝑁)))
6663reseq2d 5939 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0 → (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (1...𝑁)))
6766ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (1...𝑁)))
6867, 40, 393eqtr2d 2770 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑒 ↾ (1...𝑁)))
6965, 68eqtr4d 2767 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))))
70 elmapresaunres2 42732 . . . . . . . . . . . . . . . . . . . . 21 ((𝑒 ∈ (ℕ0m ℕ) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) → ((𝑒𝑑) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = 𝑑)
7133, 32, 69, 70syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ((𝑒𝑑) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = 𝑑)
7261, 71eqtrid 2776 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = 𝑑)
7372fveq2d 6844 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑎𝑑))
74 simprlr 779 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑎𝑑) = 0)
7573, 74eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0)
76 elmapresaunres2 42732 . . . . . . . . . . . . . . . . . . . 20 ((𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ) ∧ (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))) → ((𝑑𝑒) ↾ ℕ) = 𝑒)
7732, 33, 42, 76syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ((𝑑𝑒) ↾ ℕ) = 𝑒)
7877fveq2d 6844 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑏‘((𝑑𝑒) ↾ ℕ)) = (𝑏𝑒))
79 simprrr 781 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑏𝑒) = 0)
8078, 79eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0)
8159, 75, 80jca32 515 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑐 = ((𝑑𝑒) ↾ (1...𝑁)) ∧ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0)))
82 reseq1 5933 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑑𝑒) → (𝑓 ↾ (1...𝑁)) = ((𝑑𝑒) ↾ (1...𝑁)))
8382eqeq2d 2740 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑑𝑒) → (𝑐 = (𝑓 ↾ (1...𝑁)) ↔ 𝑐 = ((𝑑𝑒) ↾ (1...𝑁))))
84 reseq1 5933 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑑𝑒) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = ((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))
8584fveqeq2d 6848 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑑𝑒) → ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ↔ (𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0))
86 reseq1 5933 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑑𝑒) → (𝑓 ↾ ℕ) = ((𝑑𝑒) ↾ ℕ))
8786fveqeq2d 6848 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑑𝑒) → ((𝑏‘(𝑓 ↾ ℕ)) = 0 ↔ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0))
8885, 87anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑑𝑒) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0)))
8983, 88anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑑𝑒) → ((𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) ↔ (𝑐 = ((𝑑𝑒) ↾ (1...𝑁)) ∧ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0))))
9089rspcev 3585 . . . . . . . . . . . . . . . 16 (((𝑑𝑒) ∈ (ℕ0m ℤ) ∧ (𝑐 = ((𝑑𝑒) ↾ (1...𝑁)) ∧ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0))) → ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
9154, 81, 90syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
9291ex 412 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) → (((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) → ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
9392rexlimdvva 3192 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) → ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
94 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑓 ∈ (ℕ0m ℤ))
95 difss 4095 . . . . . . . . . . . . . . . . 17 (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ
96 elmapssres 8817 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (ℕ0m ℤ) ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
9794, 95, 96sylancl 586 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
9897adantr 480 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
99 nnssz 12527 . . . . . . . . . . . . . . . . 17 ℕ ⊆ ℤ
100 elmapssres 8817 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (ℕ0m ℤ) ∧ ℕ ⊆ ℤ) → (𝑓 ↾ ℕ) ∈ (ℕ0m ℕ))
10194, 99, 100sylancl 586 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑓 ↾ ℕ) ∈ (ℕ0m ℕ))
102101adantr 480 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑓 ↾ ℕ) ∈ (ℕ0m ℕ))
103 simprl 770 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → 𝑐 = (𝑓 ↾ (1...𝑁)))
10414ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (1...𝑁) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1))))
105104resabs1d 5968 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) = (𝑓 ↾ (1...𝑁)))
106103, 105eqtr4d 2767 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → 𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)))
107 simprrl 780 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0)
108106, 107jca 511 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0))
109 resabs1 5966 . . . . . . . . . . . . . . . . . 18 ((1...𝑁) ⊆ ℕ → ((𝑓 ↾ ℕ) ↾ (1...𝑁)) = (𝑓 ↾ (1...𝑁)))
11024, 109mp1i 13 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ((𝑓 ↾ ℕ) ↾ (1...𝑁)) = (𝑓 ↾ (1...𝑁)))
111103, 110eqtr4d 2767 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → 𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)))
112 simprrr 781 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑏‘(𝑓 ↾ ℕ)) = 0)
113108, 111, 112jca32 515 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
114 reseq1 5933 . . . . . . . . . . . . . . . . . . 19 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → (𝑑 ↾ (1...𝑁)) = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)))
115114eqeq2d 2740 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → (𝑐 = (𝑑 ↾ (1...𝑁)) ↔ 𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁))))
116 fveqeq2 6849 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → ((𝑎𝑑) = 0 ↔ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0))
117115, 116anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ↔ (𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0)))
118117anbi1d 631 . . . . . . . . . . . . . . . 16 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → (((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))))
119 reseq1 5933 . . . . . . . . . . . . . . . . . . 19 (𝑒 = (𝑓 ↾ ℕ) → (𝑒 ↾ (1...𝑁)) = ((𝑓 ↾ ℕ) ↾ (1...𝑁)))
120119eqeq2d 2740 . . . . . . . . . . . . . . . . . 18 (𝑒 = (𝑓 ↾ ℕ) → (𝑐 = (𝑒 ↾ (1...𝑁)) ↔ 𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁))))
121 fveqeq2 6849 . . . . . . . . . . . . . . . . . 18 (𝑒 = (𝑓 ↾ ℕ) → ((𝑏𝑒) = 0 ↔ (𝑏‘(𝑓 ↾ ℕ)) = 0))
122120, 121anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝑓 ↾ ℕ) → ((𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0) ↔ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
123122anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑒 = (𝑓 ↾ ℕ) → (((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
124118, 123rspc2ev 3598 . . . . . . . . . . . . . . 15 (((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ (𝑓 ↾ ℕ) ∈ (ℕ0m ℕ) ∧ ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)))
12598, 102, 113, 124syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)))
126125rexlimdva2 3136 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) → ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))))
12793, 126impbid 212 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
128 simplrl 776 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))))
129 mzpf 42697 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) → 𝑎:(ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1))))⟶ℤ)
130128, 129syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑎:(ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1))))⟶ℤ)
131 nn0ssz 12528 . . . . . . . . . . . . . . . . . . . . . 22 0 ⊆ ℤ
132 mapss 8839 . . . . . . . . . . . . . . . . . . . . . 22 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0m ℤ) ⊆ (ℤ ↑m ℤ))
1333, 131, 132mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 (ℕ0m ℤ) ⊆ (ℤ ↑m ℤ)
134133sseli 3939 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (ℕ0m ℤ) → 𝑓 ∈ (ℤ ↑m ℤ))
135 elmapssres 8817 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (ℤ ↑m ℤ) ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
136134, 95, 135sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (ℕ0m ℤ) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
137136adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
138130, 137ffvelcdmd 7039 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) ∈ ℤ)
139138zred 12614 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) ∈ ℝ)
140 simplrr 777 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑏 ∈ (mzPoly‘ℕ))
141 mzpf 42697 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ (mzPoly‘ℕ) → 𝑏:(ℤ ↑m ℕ)⟶ℤ)
142140, 141syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑏:(ℤ ↑m ℕ)⟶ℤ)
143 elmapssres 8817 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (ℤ ↑m ℤ) ∧ ℕ ⊆ ℤ) → (𝑓 ↾ ℕ) ∈ (ℤ ↑m ℕ))
144134, 99, 143sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (ℕ0m ℤ) → (𝑓 ↾ ℕ) ∈ (ℤ ↑m ℕ))
145144adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑓 ↾ ℕ) ∈ (ℤ ↑m ℕ))
146142, 145ffvelcdmd 7039 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑏‘(𝑓 ↾ ℕ)) ∈ ℤ)
147146zred 12614 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑏‘(𝑓 ↾ ℕ)) ∈ ℝ)
148 sumsqeq0 14120 . . . . . . . . . . . . . . . 16 (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) ∈ ℝ ∧ (𝑏‘(𝑓 ↾ ℕ)) ∈ ℝ) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) = 0))
149139, 147, 148syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) = 0))
150134adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑓 ∈ (ℤ ↑m ℤ))
151 reseq1 5933 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑓 → (𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))
152151fveq2d 6844 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑓 → (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))))
153152oveq1d 7384 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) = ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2))
154 reseq1 5933 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑓 → (𝑔 ↾ ℕ) = (𝑓 ↾ ℕ))
155154fveq2d 6844 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑓 → (𝑏‘(𝑔 ↾ ℕ)) = (𝑏‘(𝑓 ↾ ℕ)))
156155oveq1d 7384 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → ((𝑏‘(𝑔 ↾ ℕ))↑2) = ((𝑏‘(𝑓 ↾ ℕ))↑2))
157153, 156oveq12d 7387 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑓 → (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)) = (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)))
158 eqid 2729 . . . . . . . . . . . . . . . . . 18 (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) = (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))
159 ovex 7402 . . . . . . . . . . . . . . . . . 18 (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) ∈ V
160157, 158, 159fvmpt 6950 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (ℤ ↑m ℤ) → ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)))
161150, 160syl 17 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)))
162161eqeq1d 2731 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0 ↔ (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) = 0))
163149, 162bitr4d 282 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0))
164163anbi2d 630 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → ((𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) ↔ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
165164rexbidva 3155 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) ↔ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
166127, 165bitrd 279 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
16731, 166bitr3id 285 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ((∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
168167abbidv 2795 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → {𝑐 ∣ (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))} = {𝑐 ∣ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)})
16930, 168eqtrid 2776 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) = {𝑐 ∣ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)})
170 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → 𝑁 ∈ ℕ0)
171 fzssuz 13502 . . . . . . . . . . . 12 (1...𝑁) ⊆ (ℤ‘1)
172 uzssz 12790 . . . . . . . . . . . 12 (ℤ‘1) ⊆ ℤ
173171, 172sstri 3953 . . . . . . . . . . 11 (1...𝑁) ⊆ ℤ
1743, 173pm3.2i 470 . . . . . . . . . 10 (ℤ ∈ V ∧ (1...𝑁) ⊆ ℤ)
175174a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (ℤ ∈ V ∧ (1...𝑁) ⊆ ℤ))
1763a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ℤ ∈ V)
17795a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ)
178 simprl 770 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → 𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))))
179 mzpresrename 42711 . . . . . . . . . . . 12 ((ℤ ∈ V ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ ∧ 𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) ∈ (mzPoly‘ℤ))
180176, 177, 178, 179syl3anc 1373 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) ∈ (mzPoly‘ℤ))
181 2nn0 12435 . . . . . . . . . . 11 2 ∈ ℕ0
182 mzpexpmpt 42706 . . . . . . . . . . 11 (((𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) ∈ (mzPoly‘ℤ) ∧ 2 ∈ ℕ0) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2)) ∈ (mzPoly‘ℤ))
183180, 181, 182sylancl 586 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2)) ∈ (mzPoly‘ℤ))
18499a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ℕ ⊆ ℤ)
185 simprr 772 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → 𝑏 ∈ (mzPoly‘ℕ))
186 mzpresrename 42711 . . . . . . . . . . . 12 ((ℤ ∈ V ∧ ℕ ⊆ ℤ ∧ 𝑏 ∈ (mzPoly‘ℕ)) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑏‘(𝑔 ↾ ℕ))) ∈ (mzPoly‘ℤ))
187176, 184, 185, 186syl3anc 1373 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑏‘(𝑔 ↾ ℕ))) ∈ (mzPoly‘ℤ))
188 mzpexpmpt 42706 . . . . . . . . . . 11 (((𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑏‘(𝑔 ↾ ℕ))) ∈ (mzPoly‘ℤ) ∧ 2 ∈ ℕ0) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑏‘(𝑔 ↾ ℕ))↑2)) ∈ (mzPoly‘ℤ))
189187, 181, 188sylancl 586 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑏‘(𝑔 ↾ ℕ))↑2)) ∈ (mzPoly‘ℤ))
190 mzpaddmpt 42702 . . . . . . . . . 10 (((𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2)) ∈ (mzPoly‘ℤ) ∧ (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑏‘(𝑔 ↾ ℕ))↑2)) ∈ (mzPoly‘ℤ)) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) ∈ (mzPoly‘ℤ))
191183, 189, 190syl2anc 584 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) ∈ (mzPoly‘ℤ))
192 eldioph2 42723 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (ℤ ∈ V ∧ (1...𝑁) ⊆ ℤ) ∧ (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) ∈ (mzPoly‘ℤ)) → {𝑐 ∣ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)} ∈ (Dioph‘𝑁))
193170, 175, 191, 192syl3anc 1373 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → {𝑐 ∣ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)} ∈ (Dioph‘𝑁))
194169, 193eqeltrd 2828 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) ∈ (Dioph‘𝑁))
195 ineq12 4174 . . . . . . . 8 ((𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) = ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
196195eleq1d 2813 . . . . . . 7 ((𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → ((𝐴𝐵) ∈ (Dioph‘𝑁) ↔ ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) ∈ (Dioph‘𝑁)))
197194, 196syl5ibrcom 247 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ((𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
198197rexlimdvva 3192 . . . . 5 (𝑁 ∈ ℕ0 → (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑏 ∈ (mzPoly‘ℕ)(𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
19929, 198biimtrrid 243 . . . 4 (𝑁 ∈ ℕ0 → ((∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
20028, 199sylbid 240 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
2011, 200syl 17 . 2 (𝐴 ∈ (Dioph‘𝑁) → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
202201anabsi5 669 1 ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3444  cdif 3908  cun 3909  cin 3910  wss 3911   class class class wbr 5102  cmpt 5183  cres 5633  wf 6495  cfv 6499  (class class class)co 7369  ωcom 7822  m cmap 8776  cen 8892  Fincfn 8895  cr 11043  0cc0 11044  1c1 11045   + caddc 11047  cle 11185  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  cexp 14002  mzPolycmzp 42683  Diophcdioph 42716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-seq 13943  df-exp 14003  df-hash 14272  df-mzpcl 42684  df-mzp 42685  df-dioph 42717
This theorem is referenced by:  anrabdioph  42741
  Copyright terms: Public domain W3C validator