Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophin Structured version   Visualization version   GIF version

Theorem diophin 42929
Description: If two sets are Diophantine, so is their intersection. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
diophin ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))

Proof of Theorem diophin
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 42921 . . 3 (𝐴 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0)
2 id 22 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
3 zex 12488 . . . . . . 7 ℤ ∈ V
4 difexg 5271 . . . . . . 7 (ℤ ∈ V → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
53, 4mp1i 13 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
6 ominf 9159 . . . . . . 7 ¬ ω ∈ Fin
7 nn0z 12503 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
8 lzenom 42927 . . . . . . . 8 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)
9 enfi 9107 . . . . . . . 8 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin ↔ ω ∈ Fin))
107, 8, 93syl 18 . . . . . . 7 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin ↔ ω ∈ Fin))
116, 10mtbiri 327 . . . . . 6 (𝑁 ∈ ℕ0 → ¬ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin)
12 fz1eqin 42926 . . . . . . 7 (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))
13 inss1 4186 . . . . . . 7 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1)))
1412, 13eqsstrdi 3975 . . . . . 6 (𝑁 ∈ ℕ0 → (1...𝑁) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1))))
15 eldioph2b 42920 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V) ∧ (¬ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin ∧ (1...𝑁) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1))))) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)}))
162, 5, 11, 14, 15syl22anc 838 . . . . 5 (𝑁 ∈ ℕ0 → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)}))
17 nnex 12142 . . . . . . 7 ℕ ∈ V
1817a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → ℕ ∈ V)
19 1z 12512 . . . . . . 7 1 ∈ ℤ
20 nnuz 12781 . . . . . . . 8 ℕ = (ℤ‘1)
2120uzinf 13879 . . . . . . 7 (1 ∈ ℤ → ¬ ℕ ∈ Fin)
2219, 21mp1i 13 . . . . . 6 (𝑁 ∈ ℕ0 → ¬ ℕ ∈ Fin)
23 elfznn 13460 . . . . . . . 8 (𝑎 ∈ (1...𝑁) → 𝑎 ∈ ℕ)
2423ssriv 3934 . . . . . . 7 (1...𝑁) ⊆ ℕ
2524a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → (1...𝑁) ⊆ ℕ)
26 eldioph2b 42920 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → (𝐵 ∈ (Dioph‘𝑁) ↔ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
272, 18, 22, 25, 26syl22anc 838 . . . . 5 (𝑁 ∈ ℕ0 → (𝐵 ∈ (Dioph‘𝑁) ↔ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
2816, 27anbi12d 632 . . . 4 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) ↔ (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)})))
29 reeanv 3205 . . . . 5 (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑏 ∈ (mzPoly‘ℕ)(𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) ↔ (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
30 inab 4258 . . . . . . . . 9 ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) = {𝑐 ∣ (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))}
31 reeanv 3205 . . . . . . . . . . 11 (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)))
32 simplrl 776 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
33 simplrr 777 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑒 ∈ (ℕ0m ℕ))
3412eqcomd 2739 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ) = (1...𝑁))
3534reseq2d 5935 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑑 ↾ (1...𝑁)))
3635ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑑 ↾ (1...𝑁)))
3734reseq2d 5935 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ (1...𝑁)))
3837ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ (1...𝑁)))
39 simprrl 780 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = (𝑒 ↾ (1...𝑁)))
40 simprll 778 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = (𝑑 ↾ (1...𝑁)))
4138, 39, 403eqtr2d 2774 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑑 ↾ (1...𝑁)))
4236, 41eqtr4d 2771 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)))
43 elmapresaun 8814 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ) ∧ (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))) → (𝑑𝑒) ∈ (ℕ0m ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)))
4432, 33, 42, 43syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑𝑒) ∈ (ℕ0m ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)))
4520uneq2i 4114 . . . . . . . . . . . . . . . . . . . 20 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ (ℤ‘1))
4619a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 1 ∈ ℤ)
47 nn0p1nn 12431 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
4847nnge1d 12184 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 1 ≤ (𝑁 + 1))
49 lzunuz 42925 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ ∧ 1 ≤ (𝑁 + 1)) → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ (ℤ‘1)) = ℤ)
507, 46, 48, 49syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ (ℤ‘1)) = ℤ)
5145, 50eqtrid 2780 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ) = ℤ)
5251oveq2d 7371 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (ℕ0m ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)) = (ℕ0m ℤ))
5352ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (ℕ0m ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)) = (ℕ0m ℤ))
5444, 53eleqtrd 2835 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑𝑒) ∈ (ℕ0m ℤ))
55 unidm 4106 . . . . . . . . . . . . . . . . . . 19 (𝑐𝑐) = 𝑐
5640, 39uneq12d 4118 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑐𝑐) = ((𝑑 ↾ (1...𝑁)) ∪ (𝑒 ↾ (1...𝑁))))
5755, 56eqtr3id 2782 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = ((𝑑 ↾ (1...𝑁)) ∪ (𝑒 ↾ (1...𝑁))))
58 resundir 5950 . . . . . . . . . . . . . . . . . 18 ((𝑑𝑒) ↾ (1...𝑁)) = ((𝑑 ↾ (1...𝑁)) ∪ (𝑒 ↾ (1...𝑁)))
5957, 58eqtr4di 2786 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = ((𝑑𝑒) ↾ (1...𝑁)))
60 uncom 4107 . . . . . . . . . . . . . . . . . . . . 21 (𝑑𝑒) = (𝑒𝑑)
6160reseq1i 5931 . . . . . . . . . . . . . . . . . . . 20 ((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = ((𝑒𝑑) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))
62 incom 4158 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)
6362, 34eqtrid 2780 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0 → (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = (1...𝑁))
6463reseq2d 5935 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑒 ↾ (1...𝑁)))
6564ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑒 ↾ (1...𝑁)))
6663reseq2d 5935 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0 → (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (1...𝑁)))
6766ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (1...𝑁)))
6867, 40, 393eqtr2d 2774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑒 ↾ (1...𝑁)))
6965, 68eqtr4d 2771 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))))
70 elmapresaunres2 42928 . . . . . . . . . . . . . . . . . . . . 21 ((𝑒 ∈ (ℕ0m ℕ) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) → ((𝑒𝑑) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = 𝑑)
7133, 32, 69, 70syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ((𝑒𝑑) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = 𝑑)
7261, 71eqtrid 2780 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = 𝑑)
7372fveq2d 6835 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑎𝑑))
74 simprlr 779 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑎𝑑) = 0)
7573, 74eqtrd 2768 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0)
76 elmapresaunres2 42928 . . . . . . . . . . . . . . . . . . . 20 ((𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ) ∧ (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))) → ((𝑑𝑒) ↾ ℕ) = 𝑒)
7732, 33, 42, 76syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ((𝑑𝑒) ↾ ℕ) = 𝑒)
7877fveq2d 6835 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑏‘((𝑑𝑒) ↾ ℕ)) = (𝑏𝑒))
79 simprrr 781 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑏𝑒) = 0)
8078, 79eqtrd 2768 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0)
8159, 75, 80jca32 515 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑐 = ((𝑑𝑒) ↾ (1...𝑁)) ∧ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0)))
82 reseq1 5929 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑑𝑒) → (𝑓 ↾ (1...𝑁)) = ((𝑑𝑒) ↾ (1...𝑁)))
8382eqeq2d 2744 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑑𝑒) → (𝑐 = (𝑓 ↾ (1...𝑁)) ↔ 𝑐 = ((𝑑𝑒) ↾ (1...𝑁))))
84 reseq1 5929 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑑𝑒) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = ((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))
8584fveqeq2d 6839 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑑𝑒) → ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ↔ (𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0))
86 reseq1 5929 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑑𝑒) → (𝑓 ↾ ℕ) = ((𝑑𝑒) ↾ ℕ))
8786fveqeq2d 6839 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑑𝑒) → ((𝑏‘(𝑓 ↾ ℕ)) = 0 ↔ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0))
8885, 87anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑑𝑒) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0)))
8983, 88anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑑𝑒) → ((𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) ↔ (𝑐 = ((𝑑𝑒) ↾ (1...𝑁)) ∧ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0))))
9089rspcev 3573 . . . . . . . . . . . . . . . 16 (((𝑑𝑒) ∈ (ℕ0m ℤ) ∧ (𝑐 = ((𝑑𝑒) ↾ (1...𝑁)) ∧ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0))) → ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
9154, 81, 90syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
9291ex 412 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) → (((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) → ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
9392rexlimdvva 3190 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) → ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
94 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑓 ∈ (ℕ0m ℤ))
95 difss 4085 . . . . . . . . . . . . . . . . 17 (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ
96 elmapssres 8800 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (ℕ0m ℤ) ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
9794, 95, 96sylancl 586 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
9897adantr 480 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
99 nnssz 12501 . . . . . . . . . . . . . . . . 17 ℕ ⊆ ℤ
100 elmapssres 8800 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (ℕ0m ℤ) ∧ ℕ ⊆ ℤ) → (𝑓 ↾ ℕ) ∈ (ℕ0m ℕ))
10194, 99, 100sylancl 586 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑓 ↾ ℕ) ∈ (ℕ0m ℕ))
102101adantr 480 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑓 ↾ ℕ) ∈ (ℕ0m ℕ))
103 simprl 770 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → 𝑐 = (𝑓 ↾ (1...𝑁)))
10414ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (1...𝑁) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1))))
105104resabs1d 5964 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) = (𝑓 ↾ (1...𝑁)))
106103, 105eqtr4d 2771 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → 𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)))
107 simprrl 780 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0)
108106, 107jca 511 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0))
109 resabs1 5962 . . . . . . . . . . . . . . . . . 18 ((1...𝑁) ⊆ ℕ → ((𝑓 ↾ ℕ) ↾ (1...𝑁)) = (𝑓 ↾ (1...𝑁)))
11024, 109mp1i 13 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ((𝑓 ↾ ℕ) ↾ (1...𝑁)) = (𝑓 ↾ (1...𝑁)))
111103, 110eqtr4d 2771 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → 𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)))
112 simprrr 781 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑏‘(𝑓 ↾ ℕ)) = 0)
113108, 111, 112jca32 515 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
114 reseq1 5929 . . . . . . . . . . . . . . . . . . 19 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → (𝑑 ↾ (1...𝑁)) = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)))
115114eqeq2d 2744 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → (𝑐 = (𝑑 ↾ (1...𝑁)) ↔ 𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁))))
116 fveqeq2 6840 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → ((𝑎𝑑) = 0 ↔ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0))
117115, 116anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ↔ (𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0)))
118117anbi1d 631 . . . . . . . . . . . . . . . 16 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → (((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))))
119 reseq1 5929 . . . . . . . . . . . . . . . . . . 19 (𝑒 = (𝑓 ↾ ℕ) → (𝑒 ↾ (1...𝑁)) = ((𝑓 ↾ ℕ) ↾ (1...𝑁)))
120119eqeq2d 2744 . . . . . . . . . . . . . . . . . 18 (𝑒 = (𝑓 ↾ ℕ) → (𝑐 = (𝑒 ↾ (1...𝑁)) ↔ 𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁))))
121 fveqeq2 6840 . . . . . . . . . . . . . . . . . 18 (𝑒 = (𝑓 ↾ ℕ) → ((𝑏𝑒) = 0 ↔ (𝑏‘(𝑓 ↾ ℕ)) = 0))
122120, 121anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝑓 ↾ ℕ) → ((𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0) ↔ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
123122anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑒 = (𝑓 ↾ ℕ) → (((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
124118, 123rspc2ev 3586 . . . . . . . . . . . . . . 15 (((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ (𝑓 ↾ ℕ) ∈ (ℕ0m ℕ) ∧ ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)))
12598, 102, 113, 124syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)))
126125rexlimdva2 3136 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) → ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))))
12793, 126impbid 212 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
128 simplrl 776 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))))
129 mzpf 42893 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) → 𝑎:(ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1))))⟶ℤ)
130128, 129syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑎:(ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1))))⟶ℤ)
131 nn0ssz 12502 . . . . . . . . . . . . . . . . . . . . . 22 0 ⊆ ℤ
132 mapss 8823 . . . . . . . . . . . . . . . . . . . . . 22 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0m ℤ) ⊆ (ℤ ↑m ℤ))
1333, 131, 132mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 (ℕ0m ℤ) ⊆ (ℤ ↑m ℤ)
134133sseli 3926 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (ℕ0m ℤ) → 𝑓 ∈ (ℤ ↑m ℤ))
135 elmapssres 8800 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (ℤ ↑m ℤ) ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
136134, 95, 135sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (ℕ0m ℤ) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
137136adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
138130, 137ffvelcdmd 7027 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) ∈ ℤ)
139138zred 12587 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) ∈ ℝ)
140 simplrr 777 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑏 ∈ (mzPoly‘ℕ))
141 mzpf 42893 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ (mzPoly‘ℕ) → 𝑏:(ℤ ↑m ℕ)⟶ℤ)
142140, 141syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑏:(ℤ ↑m ℕ)⟶ℤ)
143 elmapssres 8800 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (ℤ ↑m ℤ) ∧ ℕ ⊆ ℤ) → (𝑓 ↾ ℕ) ∈ (ℤ ↑m ℕ))
144134, 99, 143sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (ℕ0m ℤ) → (𝑓 ↾ ℕ) ∈ (ℤ ↑m ℕ))
145144adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑓 ↾ ℕ) ∈ (ℤ ↑m ℕ))
146142, 145ffvelcdmd 7027 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑏‘(𝑓 ↾ ℕ)) ∈ ℤ)
147146zred 12587 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑏‘(𝑓 ↾ ℕ)) ∈ ℝ)
148 sumsqeq0 14093 . . . . . . . . . . . . . . . 16 (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) ∈ ℝ ∧ (𝑏‘(𝑓 ↾ ℕ)) ∈ ℝ) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) = 0))
149139, 147, 148syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) = 0))
150134adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑓 ∈ (ℤ ↑m ℤ))
151 reseq1 5929 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑓 → (𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))
152151fveq2d 6835 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑓 → (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))))
153152oveq1d 7370 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) = ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2))
154 reseq1 5929 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑓 → (𝑔 ↾ ℕ) = (𝑓 ↾ ℕ))
155154fveq2d 6835 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑓 → (𝑏‘(𝑔 ↾ ℕ)) = (𝑏‘(𝑓 ↾ ℕ)))
156155oveq1d 7370 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → ((𝑏‘(𝑔 ↾ ℕ))↑2) = ((𝑏‘(𝑓 ↾ ℕ))↑2))
157153, 156oveq12d 7373 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑓 → (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)) = (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)))
158 eqid 2733 . . . . . . . . . . . . . . . . . 18 (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) = (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))
159 ovex 7388 . . . . . . . . . . . . . . . . . 18 (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) ∈ V
160157, 158, 159fvmpt 6938 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (ℤ ↑m ℤ) → ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)))
161150, 160syl 17 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)))
162161eqeq1d 2735 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0 ↔ (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) = 0))
163149, 162bitr4d 282 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0))
164163anbi2d 630 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → ((𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) ↔ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
165164rexbidva 3155 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) ↔ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
166127, 165bitrd 279 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
16731, 166bitr3id 285 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ((∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
168167abbidv 2799 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → {𝑐 ∣ (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))} = {𝑐 ∣ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)})
16930, 168eqtrid 2780 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) = {𝑐 ∣ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)})
170 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → 𝑁 ∈ ℕ0)
171 fzssuz 13472 . . . . . . . . . . . 12 (1...𝑁) ⊆ (ℤ‘1)
172 uzssz 12763 . . . . . . . . . . . 12 (ℤ‘1) ⊆ ℤ
173171, 172sstri 3940 . . . . . . . . . . 11 (1...𝑁) ⊆ ℤ
1743, 173pm3.2i 470 . . . . . . . . . 10 (ℤ ∈ V ∧ (1...𝑁) ⊆ ℤ)
175174a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (ℤ ∈ V ∧ (1...𝑁) ⊆ ℤ))
1763a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ℤ ∈ V)
17795a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ)
178 simprl 770 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → 𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))))
179 mzpresrename 42907 . . . . . . . . . . . 12 ((ℤ ∈ V ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ ∧ 𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) ∈ (mzPoly‘ℤ))
180176, 177, 178, 179syl3anc 1373 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) ∈ (mzPoly‘ℤ))
181 2nn0 12409 . . . . . . . . . . 11 2 ∈ ℕ0
182 mzpexpmpt 42902 . . . . . . . . . . 11 (((𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) ∈ (mzPoly‘ℤ) ∧ 2 ∈ ℕ0) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2)) ∈ (mzPoly‘ℤ))
183180, 181, 182sylancl 586 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2)) ∈ (mzPoly‘ℤ))
18499a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ℕ ⊆ ℤ)
185 simprr 772 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → 𝑏 ∈ (mzPoly‘ℕ))
186 mzpresrename 42907 . . . . . . . . . . . 12 ((ℤ ∈ V ∧ ℕ ⊆ ℤ ∧ 𝑏 ∈ (mzPoly‘ℕ)) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑏‘(𝑔 ↾ ℕ))) ∈ (mzPoly‘ℤ))
187176, 184, 185, 186syl3anc 1373 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑏‘(𝑔 ↾ ℕ))) ∈ (mzPoly‘ℤ))
188 mzpexpmpt 42902 . . . . . . . . . . 11 (((𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑏‘(𝑔 ↾ ℕ))) ∈ (mzPoly‘ℤ) ∧ 2 ∈ ℕ0) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑏‘(𝑔 ↾ ℕ))↑2)) ∈ (mzPoly‘ℤ))
189187, 181, 188sylancl 586 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑏‘(𝑔 ↾ ℕ))↑2)) ∈ (mzPoly‘ℤ))
190 mzpaddmpt 42898 . . . . . . . . . 10 (((𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2)) ∈ (mzPoly‘ℤ) ∧ (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑏‘(𝑔 ↾ ℕ))↑2)) ∈ (mzPoly‘ℤ)) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) ∈ (mzPoly‘ℤ))
191183, 189, 190syl2anc 584 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) ∈ (mzPoly‘ℤ))
192 eldioph2 42919 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (ℤ ∈ V ∧ (1...𝑁) ⊆ ℤ) ∧ (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) ∈ (mzPoly‘ℤ)) → {𝑐 ∣ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)} ∈ (Dioph‘𝑁))
193170, 175, 191, 192syl3anc 1373 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → {𝑐 ∣ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)} ∈ (Dioph‘𝑁))
194169, 193eqeltrd 2833 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) ∈ (Dioph‘𝑁))
195 ineq12 4164 . . . . . . . 8 ((𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) = ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
196195eleq1d 2818 . . . . . . 7 ((𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → ((𝐴𝐵) ∈ (Dioph‘𝑁) ↔ ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) ∈ (Dioph‘𝑁)))
197194, 196syl5ibrcom 247 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ((𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
198197rexlimdvva 3190 . . . . 5 (𝑁 ∈ ℕ0 → (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑏 ∈ (mzPoly‘ℕ)(𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
19929, 198biimtrrid 243 . . . 4 (𝑁 ∈ ℕ0 → ((∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
20028, 199sylbid 240 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
2011, 200syl 17 . 2 (𝐴 ∈ (Dioph‘𝑁) → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
202201anabsi5 669 1 ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  Vcvv 3437  cdif 3895  cun 3896  cin 3897  wss 3898   class class class wbr 5095  cmpt 5176  cres 5623  wf 6485  cfv 6489  (class class class)co 7355  ωcom 7805  m cmap 8759  cen 8876  Fincfn 8879  cr 11016  0cc0 11017  1c1 11018   + caddc 11020  cle 11158  cn 12136  2c2 12191  0cn0 12392  cz 12479  cuz 12742  ...cfz 13414  cexp 13975  mzPolycmzp 42879  Diophcdioph 42912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-seq 13916  df-exp 13976  df-hash 14245  df-mzpcl 42880  df-mzp 42881  df-dioph 42913
This theorem is referenced by:  anrabdioph  42937
  Copyright terms: Public domain W3C validator