Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophin Structured version   Visualization version   GIF version

Theorem diophin 42728
Description: If two sets are Diophantine, so is their intersection. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
diophin ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))

Proof of Theorem diophin
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 42720 . . 3 (𝐴 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0)
2 id 22 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
3 zex 12648 . . . . . . 7 ℤ ∈ V
4 difexg 5347 . . . . . . 7 (ℤ ∈ V → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
53, 4mp1i 13 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
6 ominf 9321 . . . . . . 7 ¬ ω ∈ Fin
7 nn0z 12664 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
8 lzenom 42726 . . . . . . . 8 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)
9 enfi 9253 . . . . . . . 8 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin ↔ ω ∈ Fin))
107, 8, 93syl 18 . . . . . . 7 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin ↔ ω ∈ Fin))
116, 10mtbiri 327 . . . . . 6 (𝑁 ∈ ℕ0 → ¬ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin)
12 fz1eqin 42725 . . . . . . 7 (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))
13 inss1 4258 . . . . . . 7 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1)))
1412, 13eqsstrdi 4063 . . . . . 6 (𝑁 ∈ ℕ0 → (1...𝑁) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1))))
15 eldioph2b 42719 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V) ∧ (¬ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin ∧ (1...𝑁) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1))))) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)}))
162, 5, 11, 14, 15syl22anc 838 . . . . 5 (𝑁 ∈ ℕ0 → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)}))
17 nnex 12299 . . . . . . 7 ℕ ∈ V
1817a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → ℕ ∈ V)
19 1z 12673 . . . . . . 7 1 ∈ ℤ
20 nnuz 12946 . . . . . . . 8 ℕ = (ℤ‘1)
2120uzinf 14016 . . . . . . 7 (1 ∈ ℤ → ¬ ℕ ∈ Fin)
2219, 21mp1i 13 . . . . . 6 (𝑁 ∈ ℕ0 → ¬ ℕ ∈ Fin)
23 elfznn 13613 . . . . . . . 8 (𝑎 ∈ (1...𝑁) → 𝑎 ∈ ℕ)
2423ssriv 4012 . . . . . . 7 (1...𝑁) ⊆ ℕ
2524a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → (1...𝑁) ⊆ ℕ)
26 eldioph2b 42719 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → (𝐵 ∈ (Dioph‘𝑁) ↔ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
272, 18, 22, 25, 26syl22anc 838 . . . . 5 (𝑁 ∈ ℕ0 → (𝐵 ∈ (Dioph‘𝑁) ↔ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
2816, 27anbi12d 631 . . . 4 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) ↔ (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)})))
29 reeanv 3235 . . . . 5 (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑏 ∈ (mzPoly‘ℕ)(𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) ↔ (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
30 inab 4328 . . . . . . . . 9 ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) = {𝑐 ∣ (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))}
31 reeanv 3235 . . . . . . . . . . 11 (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)))
32 simplrl 776 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
33 simplrr 777 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑒 ∈ (ℕ0m ℕ))
3412eqcomd 2746 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ) = (1...𝑁))
3534reseq2d 6009 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑑 ↾ (1...𝑁)))
3635ad3antrrr 729 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑑 ↾ (1...𝑁)))
3734reseq2d 6009 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ (1...𝑁)))
3837ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ (1...𝑁)))
39 simprrl 780 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = (𝑒 ↾ (1...𝑁)))
40 simprll 778 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = (𝑑 ↾ (1...𝑁)))
4138, 39, 403eqtr2d 2786 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑑 ↾ (1...𝑁)))
4236, 41eqtr4d 2783 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)))
43 elmapresaun 8938 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ) ∧ (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))) → (𝑑𝑒) ∈ (ℕ0m ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)))
4432, 33, 42, 43syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑𝑒) ∈ (ℕ0m ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)))
4520uneq2i 4188 . . . . . . . . . . . . . . . . . . . 20 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ (ℤ‘1))
4619a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 1 ∈ ℤ)
47 nn0p1nn 12592 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
4847nnge1d 12341 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 1 ≤ (𝑁 + 1))
49 lzunuz 42724 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ ∧ 1 ≤ (𝑁 + 1)) → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ (ℤ‘1)) = ℤ)
507, 46, 48, 49syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ (ℤ‘1)) = ℤ)
5145, 50eqtrid 2792 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ) = ℤ)
5251oveq2d 7464 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (ℕ0m ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)) = (ℕ0m ℤ))
5352ad3antrrr 729 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (ℕ0m ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)) = (ℕ0m ℤ))
5444, 53eleqtrd 2846 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑𝑒) ∈ (ℕ0m ℤ))
55 unidm 4180 . . . . . . . . . . . . . . . . . . 19 (𝑐𝑐) = 𝑐
5640, 39uneq12d 4192 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑐𝑐) = ((𝑑 ↾ (1...𝑁)) ∪ (𝑒 ↾ (1...𝑁))))
5755, 56eqtr3id 2794 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = ((𝑑 ↾ (1...𝑁)) ∪ (𝑒 ↾ (1...𝑁))))
58 resundir 6024 . . . . . . . . . . . . . . . . . 18 ((𝑑𝑒) ↾ (1...𝑁)) = ((𝑑 ↾ (1...𝑁)) ∪ (𝑒 ↾ (1...𝑁)))
5957, 58eqtr4di 2798 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = ((𝑑𝑒) ↾ (1...𝑁)))
60 uncom 4181 . . . . . . . . . . . . . . . . . . . . 21 (𝑑𝑒) = (𝑒𝑑)
6160reseq1i 6005 . . . . . . . . . . . . . . . . . . . 20 ((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = ((𝑒𝑑) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))
62 incom 4230 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)
6362, 34eqtrid 2792 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0 → (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = (1...𝑁))
6463reseq2d 6009 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑒 ↾ (1...𝑁)))
6564ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑒 ↾ (1...𝑁)))
6663reseq2d 6009 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0 → (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (1...𝑁)))
6766ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (1...𝑁)))
6867, 40, 393eqtr2d 2786 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑒 ↾ (1...𝑁)))
6965, 68eqtr4d 2783 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))))
70 elmapresaunres2 42727 . . . . . . . . . . . . . . . . . . . . 21 ((𝑒 ∈ (ℕ0m ℕ) ∧ 𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) → ((𝑒𝑑) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = 𝑑)
7133, 32, 69, 70syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ((𝑒𝑑) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = 𝑑)
7261, 71eqtrid 2792 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = 𝑑)
7372fveq2d 6924 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑎𝑑))
74 simprlr 779 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑎𝑑) = 0)
7573, 74eqtrd 2780 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0)
76 elmapresaunres2 42727 . . . . . . . . . . . . . . . . . . . 20 ((𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ) ∧ (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))) → ((𝑑𝑒) ↾ ℕ) = 𝑒)
7732, 33, 42, 76syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ((𝑑𝑒) ↾ ℕ) = 𝑒)
7877fveq2d 6924 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑏‘((𝑑𝑒) ↾ ℕ)) = (𝑏𝑒))
79 simprrr 781 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑏𝑒) = 0)
8078, 79eqtrd 2780 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0)
8159, 75, 80jca32 515 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑐 = ((𝑑𝑒) ↾ (1...𝑁)) ∧ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0)))
82 reseq1 6003 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑑𝑒) → (𝑓 ↾ (1...𝑁)) = ((𝑑𝑒) ↾ (1...𝑁)))
8382eqeq2d 2751 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑑𝑒) → (𝑐 = (𝑓 ↾ (1...𝑁)) ↔ 𝑐 = ((𝑑𝑒) ↾ (1...𝑁))))
84 reseq1 6003 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑑𝑒) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = ((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))
8584fveqeq2d 6928 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑑𝑒) → ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ↔ (𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0))
86 reseq1 6003 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑑𝑒) → (𝑓 ↾ ℕ) = ((𝑑𝑒) ↾ ℕ))
8786fveqeq2d 6928 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑑𝑒) → ((𝑏‘(𝑓 ↾ ℕ)) = 0 ↔ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0))
8885, 87anbi12d 631 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑑𝑒) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0)))
8983, 88anbi12d 631 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑑𝑒) → ((𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) ↔ (𝑐 = ((𝑑𝑒) ↾ (1...𝑁)) ∧ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0))))
9089rspcev 3635 . . . . . . . . . . . . . . . 16 (((𝑑𝑒) ∈ (ℕ0m ℤ) ∧ (𝑐 = ((𝑑𝑒) ↾ (1...𝑁)) ∧ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0))) → ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
9154, 81, 90syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
9291ex 412 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0m ℕ))) → (((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) → ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
9392rexlimdvva 3219 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) → ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
94 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑓 ∈ (ℕ0m ℤ))
95 difss 4159 . . . . . . . . . . . . . . . . 17 (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ
96 elmapssres 8925 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (ℕ0m ℤ) ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
9794, 95, 96sylancl 585 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
9897adantr 480 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
99 nnssz 12661 . . . . . . . . . . . . . . . . 17 ℕ ⊆ ℤ
100 elmapssres 8925 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (ℕ0m ℤ) ∧ ℕ ⊆ ℤ) → (𝑓 ↾ ℕ) ∈ (ℕ0m ℕ))
10194, 99, 100sylancl 585 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑓 ↾ ℕ) ∈ (ℕ0m ℕ))
102101adantr 480 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑓 ↾ ℕ) ∈ (ℕ0m ℕ))
103 simprl 770 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → 𝑐 = (𝑓 ↾ (1...𝑁)))
10414ad3antrrr 729 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (1...𝑁) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1))))
105104resabs1d 6037 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) = (𝑓 ↾ (1...𝑁)))
106103, 105eqtr4d 2783 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → 𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)))
107 simprrl 780 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0)
108106, 107jca 511 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0))
109 resabs1 6036 . . . . . . . . . . . . . . . . . 18 ((1...𝑁) ⊆ ℕ → ((𝑓 ↾ ℕ) ↾ (1...𝑁)) = (𝑓 ↾ (1...𝑁)))
11024, 109mp1i 13 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ((𝑓 ↾ ℕ) ↾ (1...𝑁)) = (𝑓 ↾ (1...𝑁)))
111103, 110eqtr4d 2783 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → 𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)))
112 simprrr 781 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑏‘(𝑓 ↾ ℕ)) = 0)
113108, 111, 112jca32 515 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
114 reseq1 6003 . . . . . . . . . . . . . . . . . . 19 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → (𝑑 ↾ (1...𝑁)) = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)))
115114eqeq2d 2751 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → (𝑐 = (𝑑 ↾ (1...𝑁)) ↔ 𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁))))
116 fveqeq2 6929 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → ((𝑎𝑑) = 0 ↔ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0))
117115, 116anbi12d 631 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ↔ (𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0)))
118117anbi1d 630 . . . . . . . . . . . . . . . 16 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → (((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))))
119 reseq1 6003 . . . . . . . . . . . . . . . . . . 19 (𝑒 = (𝑓 ↾ ℕ) → (𝑒 ↾ (1...𝑁)) = ((𝑓 ↾ ℕ) ↾ (1...𝑁)))
120119eqeq2d 2751 . . . . . . . . . . . . . . . . . 18 (𝑒 = (𝑓 ↾ ℕ) → (𝑐 = (𝑒 ↾ (1...𝑁)) ↔ 𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁))))
121 fveqeq2 6929 . . . . . . . . . . . . . . . . . 18 (𝑒 = (𝑓 ↾ ℕ) → ((𝑏𝑒) = 0 ↔ (𝑏‘(𝑓 ↾ ℕ)) = 0))
122120, 121anbi12d 631 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝑓 ↾ ℕ) → ((𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0) ↔ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
123122anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑒 = (𝑓 ↾ ℕ) → (((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
124118, 123rspc2ev 3648 . . . . . . . . . . . . . . 15 (((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ (𝑓 ↾ ℕ) ∈ (ℕ0m ℕ) ∧ ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)))
12598, 102, 113, 124syl3anc 1371 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)))
126125rexlimdva2 3163 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) → ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))))
12793, 126impbid 212 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
128 simplrl 776 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))))
129 mzpf 42692 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) → 𝑎:(ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1))))⟶ℤ)
130128, 129syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑎:(ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1))))⟶ℤ)
131 nn0ssz 12662 . . . . . . . . . . . . . . . . . . . . . 22 0 ⊆ ℤ
132 mapss 8947 . . . . . . . . . . . . . . . . . . . . . 22 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0m ℤ) ⊆ (ℤ ↑m ℤ))
1333, 131, 132mp2an 691 . . . . . . . . . . . . . . . . . . . . 21 (ℕ0m ℤ) ⊆ (ℤ ↑m ℤ)
134133sseli 4004 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (ℕ0m ℤ) → 𝑓 ∈ (ℤ ↑m ℤ))
135 elmapssres 8925 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (ℤ ↑m ℤ) ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
136134, 95, 135sylancl 585 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (ℕ0m ℤ) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
137136adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℤ ↑m (ℤ ∖ (ℤ‘(𝑁 + 1)))))
138130, 137ffvelcdmd 7119 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) ∈ ℤ)
139138zred 12747 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) ∈ ℝ)
140 simplrr 777 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑏 ∈ (mzPoly‘ℕ))
141 mzpf 42692 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ (mzPoly‘ℕ) → 𝑏:(ℤ ↑m ℕ)⟶ℤ)
142140, 141syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑏:(ℤ ↑m ℕ)⟶ℤ)
143 elmapssres 8925 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (ℤ ↑m ℤ) ∧ ℕ ⊆ ℤ) → (𝑓 ↾ ℕ) ∈ (ℤ ↑m ℕ))
144134, 99, 143sylancl 585 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (ℕ0m ℤ) → (𝑓 ↾ ℕ) ∈ (ℤ ↑m ℕ))
145144adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑓 ↾ ℕ) ∈ (ℤ ↑m ℕ))
146142, 145ffvelcdmd 7119 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑏‘(𝑓 ↾ ℕ)) ∈ ℤ)
147146zred 12747 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (𝑏‘(𝑓 ↾ ℕ)) ∈ ℝ)
148 sumsqeq0 14228 . . . . . . . . . . . . . . . 16 (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) ∈ ℝ ∧ (𝑏‘(𝑓 ↾ ℕ)) ∈ ℝ) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) = 0))
149139, 147, 148syl2anc 583 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) = 0))
150134adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → 𝑓 ∈ (ℤ ↑m ℤ))
151 reseq1 6003 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑓 → (𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))
152151fveq2d 6924 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑓 → (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))))
153152oveq1d 7463 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) = ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2))
154 reseq1 6003 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑓 → (𝑔 ↾ ℕ) = (𝑓 ↾ ℕ))
155154fveq2d 6924 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑓 → (𝑏‘(𝑔 ↾ ℕ)) = (𝑏‘(𝑓 ↾ ℕ)))
156155oveq1d 7463 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → ((𝑏‘(𝑔 ↾ ℕ))↑2) = ((𝑏‘(𝑓 ↾ ℕ))↑2))
157153, 156oveq12d 7466 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑓 → (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)) = (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)))
158 eqid 2740 . . . . . . . . . . . . . . . . . 18 (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) = (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))
159 ovex 7481 . . . . . . . . . . . . . . . . . 18 (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) ∈ V
160157, 158, 159fvmpt 7029 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (ℤ ↑m ℤ) → ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)))
161150, 160syl 17 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)))
162161eqeq1d 2742 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0 ↔ (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) = 0))
163149, 162bitr4d 282 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0))
164163anbi2d 629 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0m ℤ)) → ((𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) ↔ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
165164rexbidva 3183 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) ↔ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
166127, 165bitrd 279 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0m ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
16731, 166bitr3id 285 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ((∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
168167abbidv 2811 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → {𝑐 ∣ (∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))} = {𝑐 ∣ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)})
16930, 168eqtrid 2792 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) = {𝑐 ∣ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)})
170 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → 𝑁 ∈ ℕ0)
171 fzssuz 13625 . . . . . . . . . . . 12 (1...𝑁) ⊆ (ℤ‘1)
172 uzssz 12924 . . . . . . . . . . . 12 (ℤ‘1) ⊆ ℤ
173171, 172sstri 4018 . . . . . . . . . . 11 (1...𝑁) ⊆ ℤ
1743, 173pm3.2i 470 . . . . . . . . . 10 (ℤ ∈ V ∧ (1...𝑁) ⊆ ℤ)
175174a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (ℤ ∈ V ∧ (1...𝑁) ⊆ ℤ))
1763a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ℤ ∈ V)
17795a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ)
178 simprl 770 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → 𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))))
179 mzpresrename 42706 . . . . . . . . . . . 12 ((ℤ ∈ V ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ ∧ 𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) ∈ (mzPoly‘ℤ))
180176, 177, 178, 179syl3anc 1371 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) ∈ (mzPoly‘ℤ))
181 2nn0 12570 . . . . . . . . . . 11 2 ∈ ℕ0
182 mzpexpmpt 42701 . . . . . . . . . . 11 (((𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) ∈ (mzPoly‘ℤ) ∧ 2 ∈ ℕ0) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2)) ∈ (mzPoly‘ℤ))
183180, 181, 182sylancl 585 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2)) ∈ (mzPoly‘ℤ))
18499a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ℕ ⊆ ℤ)
185 simprr 772 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → 𝑏 ∈ (mzPoly‘ℕ))
186 mzpresrename 42706 . . . . . . . . . . . 12 ((ℤ ∈ V ∧ ℕ ⊆ ℤ ∧ 𝑏 ∈ (mzPoly‘ℕ)) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑏‘(𝑔 ↾ ℕ))) ∈ (mzPoly‘ℤ))
187176, 184, 185, 186syl3anc 1371 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑏‘(𝑔 ↾ ℕ))) ∈ (mzPoly‘ℤ))
188 mzpexpmpt 42701 . . . . . . . . . . 11 (((𝑔 ∈ (ℤ ↑m ℤ) ↦ (𝑏‘(𝑔 ↾ ℕ))) ∈ (mzPoly‘ℤ) ∧ 2 ∈ ℕ0) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑏‘(𝑔 ↾ ℕ))↑2)) ∈ (mzPoly‘ℤ))
189187, 181, 188sylancl 585 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑏‘(𝑔 ↾ ℕ))↑2)) ∈ (mzPoly‘ℤ))
190 mzpaddmpt 42697 . . . . . . . . . 10 (((𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2)) ∈ (mzPoly‘ℤ) ∧ (𝑔 ∈ (ℤ ↑m ℤ) ↦ ((𝑏‘(𝑔 ↾ ℕ))↑2)) ∈ (mzPoly‘ℤ)) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) ∈ (mzPoly‘ℤ))
191183, 189, 190syl2anc 583 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) ∈ (mzPoly‘ℤ))
192 eldioph2 42718 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (ℤ ∈ V ∧ (1...𝑁) ⊆ ℤ) ∧ (𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) ∈ (mzPoly‘ℤ)) → {𝑐 ∣ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)} ∈ (Dioph‘𝑁))
193170, 175, 191, 192syl3anc 1371 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → {𝑐 ∣ ∃𝑓 ∈ (ℕ0m ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑m ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)} ∈ (Dioph‘𝑁))
194169, 193eqeltrd 2844 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) ∈ (Dioph‘𝑁))
195 ineq12 4236 . . . . . . . 8 ((𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) = ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
196195eleq1d 2829 . . . . . . 7 ((𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → ((𝐴𝐵) ∈ (Dioph‘𝑁) ↔ ({𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) ∈ (Dioph‘𝑁)))
197194, 196syl5ibrcom 247 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ((𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
198197rexlimdvva 3219 . . . . 5 (𝑁 ∈ ℕ0 → (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑏 ∈ (mzPoly‘ℕ)(𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
19929, 198biimtrrid 243 . . . 4 (𝑁 ∈ ℕ0 → ((∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0m (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0m ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
20028, 199sylbid 240 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
2011, 200syl 17 . 2 (𝐴 ∈ (Dioph‘𝑁) → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
202201anabsi5 668 1 ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976   class class class wbr 5166  cmpt 5249  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  ωcom 7903  m cmap 8884  cen 9000  Fincfn 9003  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  cle 11325  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  cexp 14112  mzPolycmzp 42678  Diophcdioph 42711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-exp 14113  df-hash 14380  df-mzpcl 42679  df-mzp 42680  df-dioph 42712
This theorem is referenced by:  anrabdioph  42736
  Copyright terms: Public domain W3C validator