Step | Hyp | Ref
| Expression |
1 | | eldiophelnn0 40586 |
. . 3
⊢ (𝐴 ∈ (Dioph‘𝑁) → 𝑁 ∈
ℕ0) |
2 | | nnex 11979 |
. . . . . 6
⊢ ℕ
∈ V |
3 | 2 | jctr 525 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑁 ∈
ℕ0 ∧ ℕ ∈ V)) |
4 | | 1z 12350 |
. . . . . . 7
⊢ 1 ∈
ℤ |
5 | | nnuz 12621 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
6 | 5 | uzinf 13685 |
. . . . . . 7
⊢ (1 ∈
ℤ → ¬ ℕ ∈ Fin) |
7 | 4, 6 | ax-mp 5 |
. . . . . 6
⊢ ¬
ℕ ∈ Fin |
8 | | elfznn 13285 |
. . . . . . 7
⊢ (𝑎 ∈ (1...𝑁) → 𝑎 ∈ ℕ) |
9 | 8 | ssriv 3925 |
. . . . . 6
⊢
(1...𝑁) ⊆
ℕ |
10 | 7, 9 | pm3.2i 471 |
. . . . 5
⊢ (¬
ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ) |
11 | | eldioph2b 40585 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) →
(𝐴 ∈
(Dioph‘𝑁) ↔
∃𝑎 ∈
(mzPoly‘ℕ)𝐴 =
{𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)})) |
12 | | eldioph2b 40585 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) →
(𝐵 ∈
(Dioph‘𝑁) ↔
∃𝑐 ∈
(mzPoly‘ℕ)𝐵 =
{𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)})) |
13 | 11, 12 | anbi12d 631 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) →
((𝐴 ∈
(Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) ↔ (∃𝑎 ∈
(mzPoly‘ℕ)𝐴 =
{𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)}))) |
14 | 3, 10, 13 | sylancl 586 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ((𝐴 ∈
(Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) ↔ (∃𝑎 ∈
(mzPoly‘ℕ)𝐴 =
{𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)}))) |
15 | | reeanv 3294 |
. . . . 5
⊢
(∃𝑎 ∈
(mzPoly‘ℕ)∃𝑐 ∈ (mzPoly‘ℕ)(𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)}) ↔ (∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)})) |
16 | | unab 4232 |
. . . . . . . . 9
⊢ ({𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)}) = {𝑏 ∣ (∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0))} |
17 | | r19.43 3280 |
. . . . . . . . . . 11
⊢
(∃𝑑 ∈
(ℕ0 ↑m ℕ)((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)) ↔ (∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0))) |
18 | | andi 1005 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑎‘𝑑) = 0 ∨ (𝑐‘𝑑) = 0)) ↔ ((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0))) |
19 | | zex 12328 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ℤ
∈ V |
20 | | nn0ssz 12341 |
. . . . . . . . . . . . . . . . . . . 20
⊢
ℕ0 ⊆ ℤ |
21 | | mapss 8677 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℤ
∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0
↑m ℕ) ⊆ (ℤ ↑m
ℕ)) |
22 | 19, 20, 21 | mp2an 689 |
. . . . . . . . . . . . . . . . . . 19
⊢
(ℕ0 ↑m ℕ) ⊆ (ℤ
↑m ℕ) |
23 | 22 | sseli 3917 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 ∈ (ℕ0
↑m ℕ) → 𝑑 ∈ (ℤ ↑m
ℕ)) |
24 | 23 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0
↑m ℕ)) → 𝑑 ∈ (ℤ ↑m
ℕ)) |
25 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑑 → (𝑎‘𝑒) = (𝑎‘𝑑)) |
26 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑑 → (𝑐‘𝑒) = (𝑐‘𝑑)) |
27 | 25, 26 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑑 → ((𝑎‘𝑒) · (𝑐‘𝑒)) = ((𝑎‘𝑑) · (𝑐‘𝑑))) |
28 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 ∈ (ℤ
↑m ℕ) ↦ ((𝑎‘𝑒) · (𝑐‘𝑒))) = (𝑒 ∈ (ℤ ↑m ℕ)
↦ ((𝑎‘𝑒) · (𝑐‘𝑒))) |
29 | | ovex 7308 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎‘𝑑) · (𝑐‘𝑑)) ∈ V |
30 | 27, 28, 29 | fvmpt 6875 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 ∈ (ℤ
↑m ℕ) → ((𝑒 ∈ (ℤ ↑m ℕ)
↦ ((𝑎‘𝑒) · (𝑐‘𝑒)))‘𝑑) = ((𝑎‘𝑑) · (𝑐‘𝑑))) |
31 | 24, 30 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0
↑m ℕ)) → ((𝑒 ∈ (ℤ ↑m ℕ)
↦ ((𝑎‘𝑒) · (𝑐‘𝑒)))‘𝑑) = ((𝑎‘𝑑) · (𝑐‘𝑑))) |
32 | 31 | eqeq1d 2740 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0
↑m ℕ)) → (((𝑒 ∈ (ℤ ↑m ℕ)
↦ ((𝑎‘𝑒) · (𝑐‘𝑒)))‘𝑑) = 0 ↔ ((𝑎‘𝑑) · (𝑐‘𝑑)) = 0)) |
33 | | simplrl 774 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0
↑m ℕ)) → 𝑎 ∈
(mzPoly‘ℕ)) |
34 | | mzpf 40558 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 ∈ (mzPoly‘ℕ)
→ 𝑎:(ℤ
↑m ℕ)⟶ℤ) |
35 | 33, 34 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0
↑m ℕ)) → 𝑎:(ℤ ↑m
ℕ)⟶ℤ) |
36 | 35, 24 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0
↑m ℕ)) → (𝑎‘𝑑) ∈ ℤ) |
37 | 36 | zcnd 12427 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0
↑m ℕ)) → (𝑎‘𝑑) ∈ ℂ) |
38 | | simplrr 775 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0
↑m ℕ)) → 𝑐 ∈
(mzPoly‘ℕ)) |
39 | | mzpf 40558 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 ∈ (mzPoly‘ℕ)
→ 𝑐:(ℤ
↑m ℕ)⟶ℤ) |
40 | 38, 39 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0
↑m ℕ)) → 𝑐:(ℤ ↑m
ℕ)⟶ℤ) |
41 | 40, 24 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0
↑m ℕ)) → (𝑐‘𝑑) ∈ ℤ) |
42 | 41 | zcnd 12427 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0
↑m ℕ)) → (𝑐‘𝑑) ∈ ℂ) |
43 | 37, 42 | mul0ord 11625 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0
↑m ℕ)) → (((𝑎‘𝑑) · (𝑐‘𝑑)) = 0 ↔ ((𝑎‘𝑑) = 0 ∨ (𝑐‘𝑑) = 0))) |
44 | 32, 43 | bitr2d 279 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0
↑m ℕ)) → (((𝑎‘𝑑) = 0 ∨ (𝑐‘𝑑) = 0) ↔ ((𝑒 ∈ (ℤ ↑m ℕ)
↦ ((𝑎‘𝑒) · (𝑐‘𝑒)))‘𝑑) = 0)) |
45 | 44 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0
↑m ℕ)) → ((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑎‘𝑑) = 0 ∨ (𝑐‘𝑑) = 0)) ↔ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ)
↦ ((𝑎‘𝑒) · (𝑐‘𝑒)))‘𝑑) = 0))) |
46 | 18, 45 | bitr3id 285 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0
↑m ℕ)) → (((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)) ↔ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ)
↦ ((𝑎‘𝑒) · (𝑐‘𝑒)))‘𝑑) = 0))) |
47 | 46 | rexbidva 3225 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) →
(∃𝑑 ∈
(ℕ0 ↑m ℕ)((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)) ↔ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ)
↦ ((𝑎‘𝑒) · (𝑐‘𝑒)))‘𝑑) = 0))) |
48 | 17, 47 | bitr3id 285 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) →
((∃𝑑 ∈
(ℕ0 ↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)) ↔ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ)
↦ ((𝑎‘𝑒) · (𝑐‘𝑒)))‘𝑑) = 0))) |
49 | 48 | abbidv 2807 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) →
{𝑏 ∣ (∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0))} = {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ)
↦ ((𝑎‘𝑒) · (𝑐‘𝑒)))‘𝑑) = 0)}) |
50 | 16, 49 | eqtrid 2790 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) →
({𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)}) = {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ)
↦ ((𝑎‘𝑒) · (𝑐‘𝑒)))‘𝑑) = 0)}) |
51 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑁 ∈
ℕ0) |
52 | 2, 9 | pm3.2i 471 |
. . . . . . . . . 10
⊢ (ℕ
∈ V ∧ (1...𝑁)
⊆ ℕ) |
53 | 52 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) →
(ℕ ∈ V ∧ (1...𝑁) ⊆ ℕ)) |
54 | | simprl 768 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑎 ∈
(mzPoly‘ℕ)) |
55 | 54, 34 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑎:(ℤ ↑m
ℕ)⟶ℤ) |
56 | 55 | feqmptd 6837 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑎 = (𝑒 ∈ (ℤ ↑m ℕ)
↦ (𝑎‘𝑒))) |
57 | 56, 54 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) →
(𝑒 ∈ (ℤ
↑m ℕ) ↦ (𝑎‘𝑒)) ∈
(mzPoly‘ℕ)) |
58 | | simprr 770 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑐 ∈
(mzPoly‘ℕ)) |
59 | 58, 39 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑐:(ℤ ↑m
ℕ)⟶ℤ) |
60 | 59 | feqmptd 6837 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑐 = (𝑒 ∈ (ℤ ↑m ℕ)
↦ (𝑐‘𝑒))) |
61 | 60, 58 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) →
(𝑒 ∈ (ℤ
↑m ℕ) ↦ (𝑐‘𝑒)) ∈
(mzPoly‘ℕ)) |
62 | | mzpmulmpt 40564 |
. . . . . . . . . 10
⊢ (((𝑒 ∈ (ℤ
↑m ℕ) ↦ (𝑎‘𝑒)) ∈ (mzPoly‘ℕ) ∧ (𝑒 ∈ (ℤ
↑m ℕ) ↦ (𝑐‘𝑒)) ∈ (mzPoly‘ℕ)) →
(𝑒 ∈ (ℤ
↑m ℕ) ↦ ((𝑎‘𝑒) · (𝑐‘𝑒))) ∈
(mzPoly‘ℕ)) |
63 | 57, 61, 62 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) →
(𝑒 ∈ (ℤ
↑m ℕ) ↦ ((𝑎‘𝑒) · (𝑐‘𝑒))) ∈
(mzPoly‘ℕ)) |
64 | | eldioph2 40584 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (ℕ ∈ V ∧ (1...𝑁) ⊆ ℕ) ∧ (𝑒 ∈ (ℤ ↑m ℕ)
↦ ((𝑎‘𝑒) · (𝑐‘𝑒))) ∈ (mzPoly‘ℕ)) →
{𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ)
↦ ((𝑎‘𝑒) · (𝑐‘𝑒)))‘𝑑) = 0)} ∈ (Dioph‘𝑁)) |
65 | 51, 53, 63, 64 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) →
{𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ)
↦ ((𝑎‘𝑒) · (𝑐‘𝑒)))‘𝑑) = 0)} ∈ (Dioph‘𝑁)) |
66 | 50, 65 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) →
({𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)}) ∈ (Dioph‘𝑁)) |
67 | | uneq12 4092 |
. . . . . . . 8
⊢ ((𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)}) → (𝐴 ∪ 𝐵) = ({𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)})) |
68 | 67 | eleq1d 2823 |
. . . . . . 7
⊢ ((𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)}) → ((𝐴 ∪ 𝐵) ∈ (Dioph‘𝑁) ↔ ({𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)}) ∈ (Dioph‘𝑁))) |
69 | 66, 68 | syl5ibrcom 246 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∈
(mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) →
((𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)}) → (𝐴 ∪ 𝐵) ∈ (Dioph‘𝑁))) |
70 | 69 | rexlimdvva 3223 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (∃𝑎 ∈
(mzPoly‘ℕ)∃𝑐 ∈ (mzPoly‘ℕ)(𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)}) → (𝐴 ∪ 𝐵) ∈ (Dioph‘𝑁))) |
71 | 15, 70 | syl5bir 242 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ((∃𝑎 ∈
(mzPoly‘ℕ)𝐴 =
{𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎‘𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0
↑m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐‘𝑑) = 0)}) → (𝐴 ∪ 𝐵) ∈ (Dioph‘𝑁))) |
72 | 14, 71 | sylbid 239 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ((𝐴 ∈
(Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴 ∪ 𝐵) ∈ (Dioph‘𝑁))) |
73 | 1, 72 | syl 17 |
. 2
⊢ (𝐴 ∈ (Dioph‘𝑁) → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴 ∪ 𝐵) ∈ (Dioph‘𝑁))) |
74 | 73 | anabsi5 666 |
1
⊢ ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴 ∪ 𝐵) ∈ (Dioph‘𝑁)) |