Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophun Structured version   Visualization version   GIF version

Theorem diophun 40511
Description: If two sets are Diophantine, so is their union. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
diophun ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))

Proof of Theorem diophun
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 40502 . . 3 (𝐴 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0)
2 nnex 11909 . . . . . 6 ℕ ∈ V
32jctr 524 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ0 ∧ ℕ ∈ V))
4 1z 12280 . . . . . . 7 1 ∈ ℤ
5 nnuz 12550 . . . . . . . 8 ℕ = (ℤ‘1)
65uzinf 13613 . . . . . . 7 (1 ∈ ℤ → ¬ ℕ ∈ Fin)
74, 6ax-mp 5 . . . . . 6 ¬ ℕ ∈ Fin
8 elfznn 13214 . . . . . . 7 (𝑎 ∈ (1...𝑁) → 𝑎 ∈ ℕ)
98ssriv 3921 . . . . . 6 (1...𝑁) ⊆ ℕ
107, 9pm3.2i 470 . . . . 5 (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)
11 eldioph2b 40501 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)}))
12 eldioph2b 40501 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → (𝐵 ∈ (Dioph‘𝑁) ↔ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}))
1311, 12anbi12d 630 . . . . 5 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) ↔ (∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)})))
143, 10, 13sylancl 585 . . . 4 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) ↔ (∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)})))
15 reeanv 3292 . . . . 5 (∃𝑎 ∈ (mzPoly‘ℕ)∃𝑐 ∈ (mzPoly‘ℕ)(𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) ↔ (∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}))
16 unab 4229 . . . . . . . . 9 ({𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) = {𝑏 ∣ (∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0))}
17 r19.43 3277 . . . . . . . . . . 11 (∃𝑑 ∈ (ℕ0m ℕ)((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ (∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)))
18 andi 1004 . . . . . . . . . . . . 13 ((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0)) ↔ ((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)))
19 zex 12258 . . . . . . . . . . . . . . . . . . . 20 ℤ ∈ V
20 nn0ssz 12271 . . . . . . . . . . . . . . . . . . . 20 0 ⊆ ℤ
21 mapss 8635 . . . . . . . . . . . . . . . . . . . 20 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0m ℕ) ⊆ (ℤ ↑m ℕ))
2219, 20, 21mp2an 688 . . . . . . . . . . . . . . . . . . 19 (ℕ0m ℕ) ⊆ (ℤ ↑m ℕ)
2322sseli 3913 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ (ℕ0m ℕ) → 𝑑 ∈ (ℤ ↑m ℕ))
2423adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → 𝑑 ∈ (ℤ ↑m ℕ))
25 fveq2 6756 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑑 → (𝑎𝑒) = (𝑎𝑑))
26 fveq2 6756 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑑 → (𝑐𝑒) = (𝑐𝑑))
2725, 26oveq12d 7273 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑑 → ((𝑎𝑒) · (𝑐𝑒)) = ((𝑎𝑑) · (𝑐𝑑)))
28 eqid 2738 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) = (𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))
29 ovex 7288 . . . . . . . . . . . . . . . . . 18 ((𝑎𝑑) · (𝑐𝑑)) ∈ V
3027, 28, 29fvmpt 6857 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (ℤ ↑m ℕ) → ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = ((𝑎𝑑) · (𝑐𝑑)))
3124, 30syl 17 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = ((𝑎𝑑) · (𝑐𝑑)))
3231eqeq1d 2740 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0 ↔ ((𝑎𝑑) · (𝑐𝑑)) = 0))
33 simplrl 773 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → 𝑎 ∈ (mzPoly‘ℕ))
34 mzpf 40474 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (mzPoly‘ℕ) → 𝑎:(ℤ ↑m ℕ)⟶ℤ)
3533, 34syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → 𝑎:(ℤ ↑m ℕ)⟶ℤ)
3635, 24ffvelrnd 6944 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (𝑎𝑑) ∈ ℤ)
3736zcnd 12356 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (𝑎𝑑) ∈ ℂ)
38 simplrr 774 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → 𝑐 ∈ (mzPoly‘ℕ))
39 mzpf 40474 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ (mzPoly‘ℕ) → 𝑐:(ℤ ↑m ℕ)⟶ℤ)
4038, 39syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → 𝑐:(ℤ ↑m ℕ)⟶ℤ)
4140, 24ffvelrnd 6944 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (𝑐𝑑) ∈ ℤ)
4241zcnd 12356 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (𝑐𝑑) ∈ ℂ)
4337, 42mul0ord 11555 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (((𝑎𝑑) · (𝑐𝑑)) = 0 ↔ ((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0)))
4432, 43bitr2d 279 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0) ↔ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0))
4544anbi2d 628 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → ((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0)) ↔ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4618, 45bitr3id 284 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4746rexbidva 3224 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0m ℕ)((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4817, 47bitr3id 284 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ((∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4948abbidv 2808 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → {𝑏 ∣ (∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0))} = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)})
5016, 49syl5eq 2791 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ({𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)})
51 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑁 ∈ ℕ0)
522, 9pm3.2i 470 . . . . . . . . . 10 (ℕ ∈ V ∧ (1...𝑁) ⊆ ℕ)
5352a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (ℕ ∈ V ∧ (1...𝑁) ⊆ ℕ))
54 simprl 767 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑎 ∈ (mzPoly‘ℕ))
5554, 34syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑎:(ℤ ↑m ℕ)⟶ℤ)
5655feqmptd 6819 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑎 = (𝑒 ∈ (ℤ ↑m ℕ) ↦ (𝑎𝑒)))
5756, 54eqeltrrd 2840 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (𝑒 ∈ (ℤ ↑m ℕ) ↦ (𝑎𝑒)) ∈ (mzPoly‘ℕ))
58 simprr 769 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑐 ∈ (mzPoly‘ℕ))
5958, 39syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑐:(ℤ ↑m ℕ)⟶ℤ)
6059feqmptd 6819 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑐 = (𝑒 ∈ (ℤ ↑m ℕ) ↦ (𝑐𝑒)))
6160, 58eqeltrrd 2840 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (𝑒 ∈ (ℤ ↑m ℕ) ↦ (𝑐𝑒)) ∈ (mzPoly‘ℕ))
62 mzpmulmpt 40480 . . . . . . . . . 10 (((𝑒 ∈ (ℤ ↑m ℕ) ↦ (𝑎𝑒)) ∈ (mzPoly‘ℕ) ∧ (𝑒 ∈ (ℤ ↑m ℕ) ↦ (𝑐𝑒)) ∈ (mzPoly‘ℕ)) → (𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) ∈ (mzPoly‘ℕ))
6357, 61, 62syl2anc 583 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) ∈ (mzPoly‘ℕ))
64 eldioph2 40500 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (ℕ ∈ V ∧ (1...𝑁) ⊆ ℕ) ∧ (𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) ∈ (mzPoly‘ℕ)) → {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)} ∈ (Dioph‘𝑁))
6551, 53, 63, 64syl3anc 1369 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)} ∈ (Dioph‘𝑁))
6650, 65eqeltrd 2839 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ({𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) ∈ (Dioph‘𝑁))
67 uneq12 4088 . . . . . . . 8 ((𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) = ({𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}))
6867eleq1d 2823 . . . . . . 7 ((𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → ((𝐴𝐵) ∈ (Dioph‘𝑁) ↔ ({𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) ∈ (Dioph‘𝑁)))
6966, 68syl5ibrcom 246 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ((𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7069rexlimdvva 3222 . . . . 5 (𝑁 ∈ ℕ0 → (∃𝑎 ∈ (mzPoly‘ℕ)∃𝑐 ∈ (mzPoly‘ℕ)(𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7115, 70syl5bir 242 . . . 4 (𝑁 ∈ ℕ0 → ((∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7214, 71sylbid 239 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
731, 72syl 17 . 2 (𝐴 ∈ (Dioph‘𝑁) → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7473anabsi5 665 1 ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  Vcvv 3422  cun 3881  wss 3883  cmpt 5153  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  0cc0 10802  1c1 10803   · cmul 10807  cn 11903  0cn0 12163  cz 12249  ...cfz 13168  mzPolycmzp 40460  Diophcdioph 40493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-mzpcl 40461  df-mzp 40462  df-dioph 40494
This theorem is referenced by:  orrabdioph  40519
  Copyright terms: Public domain W3C validator