Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophun Structured version   Visualization version   GIF version

Theorem diophun 42768
Description: If two sets are Diophantine, so is their union. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
diophun ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))

Proof of Theorem diophun
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 42759 . . 3 (𝐴 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0)
2 nnex 12199 . . . . . 6 ℕ ∈ V
32jctr 524 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ0 ∧ ℕ ∈ V))
4 1z 12570 . . . . . . 7 1 ∈ ℤ
5 nnuz 12843 . . . . . . . 8 ℕ = (ℤ‘1)
65uzinf 13937 . . . . . . 7 (1 ∈ ℤ → ¬ ℕ ∈ Fin)
74, 6ax-mp 5 . . . . . 6 ¬ ℕ ∈ Fin
8 elfznn 13521 . . . . . . 7 (𝑎 ∈ (1...𝑁) → 𝑎 ∈ ℕ)
98ssriv 3953 . . . . . 6 (1...𝑁) ⊆ ℕ
107, 9pm3.2i 470 . . . . 5 (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)
11 eldioph2b 42758 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)}))
12 eldioph2b 42758 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → (𝐵 ∈ (Dioph‘𝑁) ↔ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}))
1311, 12anbi12d 632 . . . . 5 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) ↔ (∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)})))
143, 10, 13sylancl 586 . . . 4 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) ↔ (∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)})))
15 reeanv 3210 . . . . 5 (∃𝑎 ∈ (mzPoly‘ℕ)∃𝑐 ∈ (mzPoly‘ℕ)(𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) ↔ (∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}))
16 unab 4274 . . . . . . . . 9 ({𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) = {𝑏 ∣ (∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0))}
17 r19.43 3102 . . . . . . . . . . 11 (∃𝑑 ∈ (ℕ0m ℕ)((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ (∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)))
18 andi 1009 . . . . . . . . . . . . 13 ((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0)) ↔ ((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)))
19 zex 12545 . . . . . . . . . . . . . . . . . . . 20 ℤ ∈ V
20 nn0ssz 12559 . . . . . . . . . . . . . . . . . . . 20 0 ⊆ ℤ
21 mapss 8865 . . . . . . . . . . . . . . . . . . . 20 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0m ℕ) ⊆ (ℤ ↑m ℕ))
2219, 20, 21mp2an 692 . . . . . . . . . . . . . . . . . . 19 (ℕ0m ℕ) ⊆ (ℤ ↑m ℕ)
2322sseli 3945 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ (ℕ0m ℕ) → 𝑑 ∈ (ℤ ↑m ℕ))
2423adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → 𝑑 ∈ (ℤ ↑m ℕ))
25 fveq2 6861 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑑 → (𝑎𝑒) = (𝑎𝑑))
26 fveq2 6861 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑑 → (𝑐𝑒) = (𝑐𝑑))
2725, 26oveq12d 7408 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑑 → ((𝑎𝑒) · (𝑐𝑒)) = ((𝑎𝑑) · (𝑐𝑑)))
28 eqid 2730 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) = (𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))
29 ovex 7423 . . . . . . . . . . . . . . . . . 18 ((𝑎𝑑) · (𝑐𝑑)) ∈ V
3027, 28, 29fvmpt 6971 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (ℤ ↑m ℕ) → ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = ((𝑎𝑑) · (𝑐𝑑)))
3124, 30syl 17 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = ((𝑎𝑑) · (𝑐𝑑)))
3231eqeq1d 2732 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0 ↔ ((𝑎𝑑) · (𝑐𝑑)) = 0))
33 simplrl 776 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → 𝑎 ∈ (mzPoly‘ℕ))
34 mzpf 42731 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (mzPoly‘ℕ) → 𝑎:(ℤ ↑m ℕ)⟶ℤ)
3533, 34syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → 𝑎:(ℤ ↑m ℕ)⟶ℤ)
3635, 24ffvelcdmd 7060 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (𝑎𝑑) ∈ ℤ)
3736zcnd 12646 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (𝑎𝑑) ∈ ℂ)
38 simplrr 777 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → 𝑐 ∈ (mzPoly‘ℕ))
39 mzpf 42731 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ (mzPoly‘ℕ) → 𝑐:(ℤ ↑m ℕ)⟶ℤ)
4038, 39syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → 𝑐:(ℤ ↑m ℕ)⟶ℤ)
4140, 24ffvelcdmd 7060 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (𝑐𝑑) ∈ ℤ)
4241zcnd 12646 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (𝑐𝑑) ∈ ℂ)
4337, 42mul0ord 11833 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (((𝑎𝑑) · (𝑐𝑑)) = 0 ↔ ((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0)))
4432, 43bitr2d 280 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0) ↔ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0))
4544anbi2d 630 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → ((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0)) ↔ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4618, 45bitr3id 285 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0m ℕ)) → (((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4746rexbidva 3156 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0m ℕ)((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4817, 47bitr3id 285 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ((∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4948abbidv 2796 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → {𝑏 ∣ (∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0))} = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)})
5016, 49eqtrid 2777 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ({𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)})
51 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑁 ∈ ℕ0)
522, 9pm3.2i 470 . . . . . . . . . 10 (ℕ ∈ V ∧ (1...𝑁) ⊆ ℕ)
5352a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (ℕ ∈ V ∧ (1...𝑁) ⊆ ℕ))
54 simprl 770 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑎 ∈ (mzPoly‘ℕ))
5554, 34syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑎:(ℤ ↑m ℕ)⟶ℤ)
5655feqmptd 6932 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑎 = (𝑒 ∈ (ℤ ↑m ℕ) ↦ (𝑎𝑒)))
5756, 54eqeltrrd 2830 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (𝑒 ∈ (ℤ ↑m ℕ) ↦ (𝑎𝑒)) ∈ (mzPoly‘ℕ))
58 simprr 772 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑐 ∈ (mzPoly‘ℕ))
5958, 39syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑐:(ℤ ↑m ℕ)⟶ℤ)
6059feqmptd 6932 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑐 = (𝑒 ∈ (ℤ ↑m ℕ) ↦ (𝑐𝑒)))
6160, 58eqeltrrd 2830 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (𝑒 ∈ (ℤ ↑m ℕ) ↦ (𝑐𝑒)) ∈ (mzPoly‘ℕ))
62 mzpmulmpt 42737 . . . . . . . . . 10 (((𝑒 ∈ (ℤ ↑m ℕ) ↦ (𝑎𝑒)) ∈ (mzPoly‘ℕ) ∧ (𝑒 ∈ (ℤ ↑m ℕ) ↦ (𝑐𝑒)) ∈ (mzPoly‘ℕ)) → (𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) ∈ (mzPoly‘ℕ))
6357, 61, 62syl2anc 584 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) ∈ (mzPoly‘ℕ))
64 eldioph2 42757 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (ℕ ∈ V ∧ (1...𝑁) ⊆ ℕ) ∧ (𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) ∈ (mzPoly‘ℕ)) → {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)} ∈ (Dioph‘𝑁))
6551, 53, 63, 64syl3anc 1373 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)} ∈ (Dioph‘𝑁))
6650, 65eqeltrd 2829 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ({𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) ∈ (Dioph‘𝑁))
67 uneq12 4129 . . . . . . . 8 ((𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) = ({𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}))
6867eleq1d 2814 . . . . . . 7 ((𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → ((𝐴𝐵) ∈ (Dioph‘𝑁) ↔ ({𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) ∈ (Dioph‘𝑁)))
6966, 68syl5ibrcom 247 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ((𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7069rexlimdvva 3195 . . . . 5 (𝑁 ∈ ℕ0 → (∃𝑎 ∈ (mzPoly‘ℕ)∃𝑐 ∈ (mzPoly‘ℕ)(𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7115, 70biimtrrid 243 . . . 4 (𝑁 ∈ ℕ0 → ((∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0m ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7214, 71sylbid 240 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
731, 72syl 17 . 2 (𝐴 ∈ (Dioph‘𝑁) → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7473anabsi5 669 1 ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  Vcvv 3450  cun 3915  wss 3917  cmpt 5191  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Fincfn 8921  0cc0 11075  1c1 11076   · cmul 11080  cn 12193  0cn0 12449  cz 12536  ...cfz 13475  mzPolycmzp 42717  Diophcdioph 42750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303  df-mzpcl 42718  df-mzp 42719  df-dioph 42751
This theorem is referenced by:  orrabdioph  42776
  Copyright terms: Public domain W3C validator