MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmpfi Structured version   Visualization version   GIF version

Theorem ptcmpfi 23728
Description: A topological product of finitely many compact spaces is compact. This weak version of Tychonoff's theorem does not require the axiom of choice. (Contributed by Mario Carneiro, 8-Feb-2015.)
Assertion
Ref Expression
ptcmpfi ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t𝐹) ∈ Comp)

Proof of Theorem ptcmpfi
Dummy variables 𝑣 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 6651 . . . . 5 (𝐹:𝐴⟶Comp → 𝐹 Fn 𝐴)
2 fnresdm 6600 . . . . 5 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
31, 2syl 17 . . . 4 (𝐹:𝐴⟶Comp → (𝐹𝐴) = 𝐹)
43adantl 481 . . 3 ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (𝐹𝐴) = 𝐹)
54fveq2d 6826 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝐴)) = (∏t𝐹))
6 ssid 3952 . . . 4 𝐴𝐴
7 sseq1 3955 . . . . . 6 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
8 reseq2 5922 . . . . . . . . . 10 (𝑥 = ∅ → (𝐹𝑥) = (𝐹 ↾ ∅))
9 res0 5931 . . . . . . . . . 10 (𝐹 ↾ ∅) = ∅
108, 9eqtrdi 2782 . . . . . . . . 9 (𝑥 = ∅ → (𝐹𝑥) = ∅)
1110fveq2d 6826 . . . . . . . 8 (𝑥 = ∅ → (∏t‘(𝐹𝑥)) = (∏t‘∅))
1211eleq1d 2816 . . . . . . 7 (𝑥 = ∅ → ((∏t‘(𝐹𝑥)) ∈ Comp ↔ (∏t‘∅) ∈ Comp))
1312imbi2d 340 . . . . . 6 (𝑥 = ∅ → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp) ↔ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘∅) ∈ Comp)))
147, 13imbi12d 344 . . . . 5 (𝑥 = ∅ → ((𝑥𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp)) ↔ (∅ ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘∅) ∈ Comp))))
15 sseq1 3955 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
16 reseq2 5922 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1716fveq2d 6826 . . . . . . . 8 (𝑥 = 𝑦 → (∏t‘(𝐹𝑥)) = (∏t‘(𝐹𝑦)))
1817eleq1d 2816 . . . . . . 7 (𝑥 = 𝑦 → ((∏t‘(𝐹𝑥)) ∈ Comp ↔ (∏t‘(𝐹𝑦)) ∈ Comp))
1918imbi2d 340 . . . . . 6 (𝑥 = 𝑦 → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp) ↔ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp)))
2015, 19imbi12d 344 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp)) ↔ (𝑦𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp))))
21 sseq1 3955 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
22 reseq2 5922 . . . . . . . . 9 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹𝑥) = (𝐹 ↾ (𝑦 ∪ {𝑧})))
2322fveq2d 6826 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (∏t‘(𝐹𝑥)) = (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))))
2423eleq1d 2816 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((∏t‘(𝐹𝑥)) ∈ Comp ↔ (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))
2524imbi2d 340 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp) ↔ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp)))
2621, 25imbi12d 344 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp)) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))))
27 sseq1 3955 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
28 reseq2 5922 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
2928fveq2d 6826 . . . . . . . 8 (𝑥 = 𝐴 → (∏t‘(𝐹𝑥)) = (∏t‘(𝐹𝐴)))
3029eleq1d 2816 . . . . . . 7 (𝑥 = 𝐴 → ((∏t‘(𝐹𝑥)) ∈ Comp ↔ (∏t‘(𝐹𝐴)) ∈ Comp))
3130imbi2d 340 . . . . . 6 (𝑥 = 𝐴 → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp) ↔ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝐴)) ∈ Comp)))
3227, 31imbi12d 344 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp)) ↔ (𝐴𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝐴)) ∈ Comp))))
33 0ex 5243 . . . . . . . . 9 ∅ ∈ V
34 f0 6704 . . . . . . . . 9 ∅:∅⟶Top
35 pttop 23497 . . . . . . . . 9 ((∅ ∈ V ∧ ∅:∅⟶Top) → (∏t‘∅) ∈ Top)
3633, 34, 35mp2an 692 . . . . . . . 8 (∏t‘∅) ∈ Top
37 eqid 2731 . . . . . . . . . . . . 13 (∏t‘∅) = (∏t‘∅)
3837ptuni 23509 . . . . . . . . . . . 12 ((∅ ∈ V ∧ ∅:∅⟶Top) → X𝑥 ∈ ∅ (∅‘𝑥) = (∏t‘∅))
3933, 34, 38mp2an 692 . . . . . . . . . . 11 X𝑥 ∈ ∅ (∅‘𝑥) = (∏t‘∅)
40 ixp0x 8850 . . . . . . . . . . . 12 X𝑥 ∈ ∅ (∅‘𝑥) = {∅}
41 snfi 8965 . . . . . . . . . . . 12 {∅} ∈ Fin
4240, 41eqeltri 2827 . . . . . . . . . . 11 X𝑥 ∈ ∅ (∅‘𝑥) ∈ Fin
4339, 42eqeltrri 2828 . . . . . . . . . 10 (∏t‘∅) ∈ Fin
44 pwfi 9203 . . . . . . . . . 10 ( (∏t‘∅) ∈ Fin ↔ 𝒫 (∏t‘∅) ∈ Fin)
4543, 44mpbi 230 . . . . . . . . 9 𝒫 (∏t‘∅) ∈ Fin
46 pwuni 4894 . . . . . . . . 9 (∏t‘∅) ⊆ 𝒫 (∏t‘∅)
47 ssfi 9082 . . . . . . . . 9 ((𝒫 (∏t‘∅) ∈ Fin ∧ (∏t‘∅) ⊆ 𝒫 (∏t‘∅)) → (∏t‘∅) ∈ Fin)
4845, 46, 47mp2an 692 . . . . . . . 8 (∏t‘∅) ∈ Fin
4936, 48elini 4146 . . . . . . 7 (∏t‘∅) ∈ (Top ∩ Fin)
50 fincmp 23308 . . . . . . 7 ((∏t‘∅) ∈ (Top ∩ Fin) → (∏t‘∅) ∈ Comp)
5149, 50ax-mp 5 . . . . . 6 (∏t‘∅) ∈ Comp
52512a1i 12 . . . . 5 (∅ ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘∅) ∈ Comp))
53 ssun1 4125 . . . . . . . . 9 𝑦 ⊆ (𝑦 ∪ {𝑧})
54 id 22 . . . . . . . . 9 ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
5553, 54sstrid 3941 . . . . . . . 8 ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑦𝐴)
5655imim1i 63 . . . . . . 7 ((𝑦𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp)))
57 eqid 2731 . . . . . . . . . . . . . 14 (∏t‘(𝐹𝑦)) = (∏t‘(𝐹𝑦))
58 eqid 2731 . . . . . . . . . . . . . 14 (∏t‘(𝐹 ↾ {𝑧})) = (∏t‘(𝐹 ↾ {𝑧}))
59 eqid 2731 . . . . . . . . . . . . . 14 (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) = (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧})))
60 resabs1 5954 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ 𝑦) = (𝐹𝑦))
6153, 60ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ 𝑦) = (𝐹𝑦)
6261eqcomi 2740 . . . . . . . . . . . . . . 15 (𝐹𝑦) = ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ 𝑦)
6362fveq2i 6825 . . . . . . . . . . . . . 14 (∏t‘(𝐹𝑦)) = (∏t‘((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ 𝑦))
64 ssun2 4126 . . . . . . . . . . . . . . . . 17 {𝑧} ⊆ (𝑦 ∪ {𝑧})
65 resabs1 5954 . . . . . . . . . . . . . . . . 17 ({𝑧} ⊆ (𝑦 ∪ {𝑧}) → ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ {𝑧}) = (𝐹 ↾ {𝑧}))
6664, 65ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ {𝑧}) = (𝐹 ↾ {𝑧})
6766eqcomi 2740 . . . . . . . . . . . . . . 15 (𝐹 ↾ {𝑧}) = ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ {𝑧})
6867fveq2i 6825 . . . . . . . . . . . . . 14 (∏t‘(𝐹 ↾ {𝑧})) = (∏t‘((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ {𝑧}))
69 eqid 2731 . . . . . . . . . . . . . 14 (𝑢 (∏t‘(𝐹𝑦)), 𝑣 (∏t‘(𝐹 ↾ {𝑧})) ↦ (𝑢𝑣)) = (𝑢 (∏t‘(𝐹𝑦)), 𝑣 (∏t‘(𝐹 ↾ {𝑧})) ↦ (𝑢𝑣))
70 vex 3440 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
71 vsnex 5370 . . . . . . . . . . . . . . . 16 {𝑧} ∈ V
7270, 71unex 7677 . . . . . . . . . . . . . . 15 (𝑦 ∪ {𝑧}) ∈ V
7372a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) ∈ V)
74 simplr 768 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝐹:𝐴⟶Comp)
75 cmptop 23310 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ Comp → 𝑥 ∈ Top)
7675ssriv 3933 . . . . . . . . . . . . . . . 16 Comp ⊆ Top
77 fss 6667 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶Comp ∧ Comp ⊆ Top) → 𝐹:𝐴⟶Top)
7874, 76, 77sylancl 586 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝐹:𝐴⟶Top)
79 simprr 772 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
8078, 79fssresd 6690 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹 ↾ (𝑦 ∪ {𝑧})):(𝑦 ∪ {𝑧})⟶Top)
81 eqidd 2732 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
82 simprl 770 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ¬ 𝑧𝑦)
83 disjsn 4661 . . . . . . . . . . . . . . 15 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
8482, 83sylibr 234 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∩ {𝑧}) = ∅)
8557, 58, 59, 63, 68, 69, 73, 80, 81, 84ptunhmeo 23723 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑢 (∏t‘(𝐹𝑦)), 𝑣 (∏t‘(𝐹 ↾ {𝑧})) ↦ (𝑢𝑣)) ∈ (((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧})))Homeo(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧})))))
86 hmphi 23692 . . . . . . . . . . . . 13 ((𝑢 (∏t‘(𝐹𝑦)), 𝑣 (∏t‘(𝐹 ↾ {𝑧})) ↦ (𝑢𝑣)) ∈ (((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧})))Homeo(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧})))) → ((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ≃ (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))))
8785, 86syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ≃ (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))))
881ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝐹 Fn 𝐴)
8964, 79sstrid 3941 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → {𝑧} ⊆ 𝐴)
90 vex 3440 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
9190snss 4734 . . . . . . . . . . . . . . . . 17 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
9289, 91sylibr 234 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧𝐴)
93 fnressn 7091 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐴𝑧𝐴) → (𝐹 ↾ {𝑧}) = {⟨𝑧, (𝐹𝑧)⟩})
9488, 92, 93syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹 ↾ {𝑧}) = {⟨𝑧, (𝐹𝑧)⟩})
9594fveq2d 6826 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (∏t‘(𝐹 ↾ {𝑧})) = (∏t‘{⟨𝑧, (𝐹𝑧)⟩}))
96 eqid 2731 . . . . . . . . . . . . . . . . 17 (∏t‘{⟨𝑧, (𝐹𝑧)⟩}) = (∏t‘{⟨𝑧, (𝐹𝑧)⟩})
9790a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ V)
9874, 92ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹𝑧) ∈ Comp)
9976, 98sselid 3927 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹𝑧) ∈ Top)
100 toptopon2 22833 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑧) ∈ Top ↔ (𝐹𝑧) ∈ (TopOn‘ (𝐹𝑧)))
10199, 100sylib 218 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹𝑧) ∈ (TopOn‘ (𝐹𝑧)))
10296, 97, 101pt1hmeo 23721 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑥 (𝐹𝑧) ↦ {⟨𝑧, 𝑥⟩}) ∈ ((𝐹𝑧)Homeo(∏t‘{⟨𝑧, (𝐹𝑧)⟩})))
103 hmphi 23692 . . . . . . . . . . . . . . . 16 ((𝑥 (𝐹𝑧) ↦ {⟨𝑧, 𝑥⟩}) ∈ ((𝐹𝑧)Homeo(∏t‘{⟨𝑧, (𝐹𝑧)⟩})) → (𝐹𝑧) ≃ (∏t‘{⟨𝑧, (𝐹𝑧)⟩}))
104102, 103syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹𝑧) ≃ (∏t‘{⟨𝑧, (𝐹𝑧)⟩}))
105 cmphmph 23703 . . . . . . . . . . . . . . 15 ((𝐹𝑧) ≃ (∏t‘{⟨𝑧, (𝐹𝑧)⟩}) → ((𝐹𝑧) ∈ Comp → (∏t‘{⟨𝑧, (𝐹𝑧)⟩}) ∈ Comp))
106104, 98, 105sylc 65 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (∏t‘{⟨𝑧, (𝐹𝑧)⟩}) ∈ Comp)
10795, 106eqeltrd 2831 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (∏t‘(𝐹 ↾ {𝑧})) ∈ Comp)
108 txcmp 23558 . . . . . . . . . . . . . 14 (((∏t‘(𝐹𝑦)) ∈ Comp ∧ (∏t‘(𝐹 ↾ {𝑧})) ∈ Comp) → ((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ∈ Comp)
109108expcom 413 . . . . . . . . . . . . 13 ((∏t‘(𝐹 ↾ {𝑧})) ∈ Comp → ((∏t‘(𝐹𝑦)) ∈ Comp → ((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ∈ Comp))
110107, 109syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ((∏t‘(𝐹𝑦)) ∈ Comp → ((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ∈ Comp))
111 cmphmph 23703 . . . . . . . . . . . 12 (((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ≃ (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) → (((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ∈ Comp → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))
11287, 110, 111sylsyld 61 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ((∏t‘(𝐹𝑦)) ∈ Comp → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))
113112expcom 413 . . . . . . . . . 10 ((¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → ((∏t‘(𝐹𝑦)) ∈ Comp → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp)))
114113a2d 29 . . . . . . . . 9 ((¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp) → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp)))
115114ex 412 . . . . . . . 8 𝑧𝑦 → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp) → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))))
116115a2d 29 . . . . . . 7 𝑧𝑦 → (((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))))
11756, 116syl5 34 . . . . . 6 𝑧𝑦 → ((𝑦𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))))
118117adantl 481 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝑦𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))))
11914, 20, 26, 32, 52, 118findcard2s 9075 . . . 4 (𝐴 ∈ Fin → (𝐴𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝐴)) ∈ Comp)))
1206, 119mpi 20 . . 3 (𝐴 ∈ Fin → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝐴)) ∈ Comp))
121120anabsi5 669 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝐴)) ∈ Comp)
1225, 121eqeltrrd 2832 1 ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t𝐹) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  cin 3896  wss 3897  c0 4280  𝒫 cpw 4547  {csn 4573  cop 4579   cuni 4856   class class class wbr 5089  cmpt 5170  cres 5616   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  Xcixp 8821  Fincfn 8869  tcpt 17342  Topctop 22808  TopOnctopon 22825  Compccmp 23301   ×t ctx 23475  Homeochmeo 23668  chmph 23669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-2o 8386  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-fin 8873  df-fi 9295  df-topgen 17347  df-pt 17348  df-top 22809  df-topon 22826  df-bases 22861  df-cn 23142  df-cnp 23143  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-hmph 23671
This theorem is referenced by:  poimirlem30  37700
  Copyright terms: Public domain W3C validator