| Step | Hyp | Ref
| Expression |
| 1 | | ffn 6711 |
. . . . 5
⊢ (𝐹:𝐴⟶Comp → 𝐹 Fn 𝐴) |
| 2 | | fnresdm 6662 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝐹:𝐴⟶Comp → (𝐹 ↾ 𝐴) = 𝐹) |
| 4 | 3 | adantl 481 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (𝐹 ↾ 𝐴) = 𝐹) |
| 5 | 4 | fveq2d 6885 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝐴)) = (∏t‘𝐹)) |
| 6 | | ssid 3986 |
. . . 4
⊢ 𝐴 ⊆ 𝐴 |
| 7 | | sseq1 3989 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝑥 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) |
| 8 | | reseq2 5966 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → (𝐹 ↾ 𝑥) = (𝐹 ↾ ∅)) |
| 9 | | res0 5975 |
. . . . . . . . . 10
⊢ (𝐹 ↾ ∅) =
∅ |
| 10 | 8, 9 | eqtrdi 2787 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝐹 ↾ 𝑥) = ∅) |
| 11 | 10 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑥 = ∅ →
(∏t‘(𝐹 ↾ 𝑥)) =
(∏t‘∅)) |
| 12 | 11 | eleq1d 2820 |
. . . . . . 7
⊢ (𝑥 = ∅ →
((∏t‘(𝐹 ↾ 𝑥)) ∈ Comp ↔
(∏t‘∅) ∈ Comp)) |
| 13 | 12 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = ∅ → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝑥)) ∈ Comp) ↔ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘∅) ∈ Comp))) |
| 14 | 7, 13 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = ∅ → ((𝑥 ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝑥)) ∈ Comp)) ↔ (∅ ⊆
𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘∅) ∈ Comp)))) |
| 15 | | sseq1 3989 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) |
| 16 | | reseq2 5966 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐹 ↾ 𝑥) = (𝐹 ↾ 𝑦)) |
| 17 | 16 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (∏t‘(𝐹 ↾ 𝑥)) = (∏t‘(𝐹 ↾ 𝑦))) |
| 18 | 17 | eleq1d 2820 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((∏t‘(𝐹 ↾ 𝑥)) ∈ Comp ↔
(∏t‘(𝐹 ↾ 𝑦)) ∈ Comp)) |
| 19 | 18 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝑥)) ∈ Comp) ↔ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝑦)) ∈ Comp))) |
| 20 | 15, 19 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑥 ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝑥)) ∈ Comp)) ↔ (𝑦 ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝑦)) ∈ Comp)))) |
| 21 | | sseq1 3989 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ⊆ 𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) |
| 22 | | reseq2 5966 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹 ↾ 𝑥) = (𝐹 ↾ (𝑦 ∪ {𝑧}))) |
| 23 | 22 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∏t‘(𝐹 ↾ 𝑥)) = (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧})))) |
| 24 | 23 | eleq1d 2820 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((∏t‘(𝐹 ↾ 𝑥)) ∈ Comp ↔
(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp)) |
| 25 | 24 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝑥)) ∈ Comp) ↔ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))) |
| 26 | 21, 25 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝑥)) ∈ Comp)) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp)))) |
| 27 | | sseq1 3989 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
| 28 | | reseq2 5966 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (𝐹 ↾ 𝑥) = (𝐹 ↾ 𝐴)) |
| 29 | 28 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (∏t‘(𝐹 ↾ 𝑥)) = (∏t‘(𝐹 ↾ 𝐴))) |
| 30 | 29 | eleq1d 2820 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((∏t‘(𝐹 ↾ 𝑥)) ∈ Comp ↔
(∏t‘(𝐹 ↾ 𝐴)) ∈ Comp)) |
| 31 | 30 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝑥)) ∈ Comp) ↔ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝐴)) ∈ Comp))) |
| 32 | 27, 31 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝑥)) ∈ Comp)) ↔ (𝐴 ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝐴)) ∈ Comp)))) |
| 33 | | 0ex 5282 |
. . . . . . . . 9
⊢ ∅
∈ V |
| 34 | | f0 6764 |
. . . . . . . . 9
⊢
∅:∅⟶Top |
| 35 | | pttop 23525 |
. . . . . . . . 9
⊢ ((∅
∈ V ∧ ∅:∅⟶Top) →
(∏t‘∅) ∈ Top) |
| 36 | 33, 34, 35 | mp2an 692 |
. . . . . . . 8
⊢
(∏t‘∅) ∈ Top |
| 37 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢
(∏t‘∅) =
(∏t‘∅) |
| 38 | 37 | ptuni 23537 |
. . . . . . . . . . . 12
⊢ ((∅
∈ V ∧ ∅:∅⟶Top) → X𝑥 ∈ ∅ ∪ (∅‘𝑥) = ∪
(∏t‘∅)) |
| 39 | 33, 34, 38 | mp2an 692 |
. . . . . . . . . . 11
⊢ X𝑥 ∈
∅ ∪ (∅‘𝑥) = ∪
(∏t‘∅) |
| 40 | | ixp0x 8945 |
. . . . . . . . . . . 12
⊢ X𝑥 ∈
∅ ∪ (∅‘𝑥) = {∅} |
| 41 | | snfi 9062 |
. . . . . . . . . . . 12
⊢ {∅}
∈ Fin |
| 42 | 40, 41 | eqeltri 2831 |
. . . . . . . . . . 11
⊢ X𝑥 ∈
∅ ∪ (∅‘𝑥) ∈ Fin |
| 43 | 39, 42 | eqeltrri 2832 |
. . . . . . . . . 10
⊢ ∪ (∏t‘∅) ∈
Fin |
| 44 | | pwfi 9334 |
. . . . . . . . . 10
⊢ (∪ (∏t‘∅) ∈ Fin ↔
𝒫 ∪ (∏t‘∅)
∈ Fin) |
| 45 | 43, 44 | mpbi 230 |
. . . . . . . . 9
⊢ 𝒫
∪ (∏t‘∅) ∈
Fin |
| 46 | | pwuni 4926 |
. . . . . . . . 9
⊢
(∏t‘∅) ⊆ 𝒫 ∪ (∏t‘∅) |
| 47 | | ssfi 9192 |
. . . . . . . . 9
⊢
((𝒫 ∪
(∏t‘∅) ∈ Fin ∧
(∏t‘∅) ⊆ 𝒫 ∪ (∏t‘∅)) →
(∏t‘∅) ∈ Fin) |
| 48 | 45, 46, 47 | mp2an 692 |
. . . . . . . 8
⊢
(∏t‘∅) ∈ Fin |
| 49 | 36, 48 | elini 4179 |
. . . . . . 7
⊢
(∏t‘∅) ∈ (Top ∩
Fin) |
| 50 | | fincmp 23336 |
. . . . . . 7
⊢
((∏t‘∅) ∈ (Top ∩ Fin) →
(∏t‘∅) ∈ Comp) |
| 51 | 49, 50 | ax-mp 5 |
. . . . . 6
⊢
(∏t‘∅) ∈ Comp |
| 52 | 51 | 2a1i 12 |
. . . . 5
⊢ (∅
⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘∅) ∈ Comp)) |
| 53 | | ssun1 4158 |
. . . . . . . . 9
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
| 54 | | id 22 |
. . . . . . . . 9
⊢ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑦 ∪ {𝑧}) ⊆ 𝐴) |
| 55 | 53, 54 | sstrid 3975 |
. . . . . . . 8
⊢ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → 𝑦 ⊆ 𝐴) |
| 56 | 55 | imim1i 63 |
. . . . . . 7
⊢ ((𝑦 ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝑦)) ∈ Comp)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝑦)) ∈ Comp))) |
| 57 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ ∪ (∏t‘(𝐹 ↾ 𝑦)) = ∪
(∏t‘(𝐹 ↾ 𝑦)) |
| 58 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ ∪ (∏t‘(𝐹 ↾ {𝑧})) = ∪
(∏t‘(𝐹 ↾ {𝑧})) |
| 59 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) = (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) |
| 60 | | resabs1 5998 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ 𝑦) = (𝐹 ↾ 𝑦)) |
| 61 | 53, 60 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ 𝑦) = (𝐹 ↾ 𝑦) |
| 62 | 61 | eqcomi 2745 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ↾ 𝑦) = ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ 𝑦) |
| 63 | 62 | fveq2i 6884 |
. . . . . . . . . . . . . 14
⊢
(∏t‘(𝐹 ↾ 𝑦)) = (∏t‘((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ 𝑦)) |
| 64 | | ssun2 4159 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑧} ⊆ (𝑦 ∪ {𝑧}) |
| 65 | | resabs1 5998 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝑧} ⊆ (𝑦 ∪ {𝑧}) → ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ {𝑧}) = (𝐹 ↾ {𝑧})) |
| 66 | 64, 65 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ {𝑧}) = (𝐹 ↾ {𝑧}) |
| 67 | 66 | eqcomi 2745 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ↾ {𝑧}) = ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ {𝑧}) |
| 68 | 67 | fveq2i 6884 |
. . . . . . . . . . . . . 14
⊢
(∏t‘(𝐹 ↾ {𝑧})) = (∏t‘((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ {𝑧})) |
| 69 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ ∪ (∏t‘(𝐹 ↾ 𝑦)), 𝑣 ∈ ∪
(∏t‘(𝐹 ↾ {𝑧})) ↦ (𝑢 ∪ 𝑣)) = (𝑢 ∈ ∪
(∏t‘(𝐹 ↾ 𝑦)), 𝑣 ∈ ∪
(∏t‘(𝐹 ↾ {𝑧})) ↦ (𝑢 ∪ 𝑣)) |
| 70 | | vex 3468 |
. . . . . . . . . . . . . . . 16
⊢ 𝑦 ∈ V |
| 71 | | vsnex 5409 |
. . . . . . . . . . . . . . . 16
⊢ {𝑧} ∈ V |
| 72 | 70, 71 | unex 7743 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∪ {𝑧}) ∈ V |
| 73 | 72 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) ∈ V) |
| 74 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝐹:𝐴⟶Comp) |
| 75 | | cmptop 23338 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ Comp → 𝑥 ∈ Top) |
| 76 | 75 | ssriv 3967 |
. . . . . . . . . . . . . . . 16
⊢ Comp
⊆ Top |
| 77 | | fss 6727 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝐴⟶Comp ∧ Comp ⊆ Top) →
𝐹:𝐴⟶Top) |
| 78 | 74, 76, 77 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝐹:𝐴⟶Top) |
| 79 | | simprr 772 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴) |
| 80 | 78, 79 | fssresd 6750 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹 ↾ (𝑦 ∪ {𝑧})):(𝑦 ∪ {𝑧})⟶Top) |
| 81 | | eqidd 2737 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧})) |
| 82 | | simprl 770 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ¬ 𝑧 ∈ 𝑦) |
| 83 | | disjsn 4692 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
| 84 | 82, 83 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∩ {𝑧}) = ∅) |
| 85 | 57, 58, 59, 63, 68, 69, 73, 80, 81, 84 | ptunhmeo 23751 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑢 ∈ ∪
(∏t‘(𝐹 ↾ 𝑦)), 𝑣 ∈ ∪
(∏t‘(𝐹 ↾ {𝑧})) ↦ (𝑢 ∪ 𝑣)) ∈ (((∏t‘(𝐹 ↾ 𝑦)) ×t
(∏t‘(𝐹 ↾ {𝑧})))Homeo(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))))) |
| 86 | | hmphi 23720 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ ∪ (∏t‘(𝐹 ↾ 𝑦)), 𝑣 ∈ ∪
(∏t‘(𝐹 ↾ {𝑧})) ↦ (𝑢 ∪ 𝑣)) ∈ (((∏t‘(𝐹 ↾ 𝑦)) ×t
(∏t‘(𝐹 ↾ {𝑧})))Homeo(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧})))) →
((∏t‘(𝐹 ↾ 𝑦)) ×t
(∏t‘(𝐹 ↾ {𝑧}))) ≃ (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧})))) |
| 87 | 85, 86 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ((∏t‘(𝐹 ↾ 𝑦)) ×t
(∏t‘(𝐹 ↾ {𝑧}))) ≃ (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧})))) |
| 88 | 1 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝐹 Fn 𝐴) |
| 89 | 64, 79 | sstrid 3975 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → {𝑧} ⊆ 𝐴) |
| 90 | | vex 3468 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑧 ∈ V |
| 91 | 90 | snss 4766 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ 𝐴 ↔ {𝑧} ⊆ 𝐴) |
| 92 | 89, 91 | sylibr 234 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ 𝐴) |
| 93 | | fnressn 7153 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 Fn 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹 ↾ {𝑧}) = {〈𝑧, (𝐹‘𝑧)〉}) |
| 94 | 88, 92, 93 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹 ↾ {𝑧}) = {〈𝑧, (𝐹‘𝑧)〉}) |
| 95 | 94 | fveq2d 6885 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (∏t‘(𝐹 ↾ {𝑧})) = (∏t‘{〈𝑧, (𝐹‘𝑧)〉})) |
| 96 | | eqid 2736 |
. . . . . . . . . . . . . . . . 17
⊢
(∏t‘{〈𝑧, (𝐹‘𝑧)〉}) =
(∏t‘{〈𝑧, (𝐹‘𝑧)〉}) |
| 97 | 90 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ V) |
| 98 | 74, 92 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹‘𝑧) ∈ Comp) |
| 99 | 76, 98 | sselid 3961 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹‘𝑧) ∈ Top) |
| 100 | | toptopon2 22861 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑧) ∈ Top ↔ (𝐹‘𝑧) ∈ (TopOn‘∪ (𝐹‘𝑧))) |
| 101 | 99, 100 | sylib 218 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹‘𝑧) ∈ (TopOn‘∪ (𝐹‘𝑧))) |
| 102 | 96, 97, 101 | pt1hmeo 23749 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑥 ∈ ∪ (𝐹‘𝑧) ↦ {〈𝑧, 𝑥〉}) ∈ ((𝐹‘𝑧)Homeo(∏t‘{〈𝑧, (𝐹‘𝑧)〉}))) |
| 103 | | hmphi 23720 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ∪ (𝐹‘𝑧) ↦ {〈𝑧, 𝑥〉}) ∈ ((𝐹‘𝑧)Homeo(∏t‘{〈𝑧, (𝐹‘𝑧)〉})) → (𝐹‘𝑧) ≃
(∏t‘{〈𝑧, (𝐹‘𝑧)〉})) |
| 104 | 102, 103 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹‘𝑧) ≃
(∏t‘{〈𝑧, (𝐹‘𝑧)〉})) |
| 105 | | cmphmph 23731 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑧) ≃
(∏t‘{〈𝑧, (𝐹‘𝑧)〉}) → ((𝐹‘𝑧) ∈ Comp →
(∏t‘{〈𝑧, (𝐹‘𝑧)〉}) ∈ Comp)) |
| 106 | 104, 98, 105 | sylc 65 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) →
(∏t‘{〈𝑧, (𝐹‘𝑧)〉}) ∈ Comp) |
| 107 | 95, 106 | eqeltrd 2835 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (∏t‘(𝐹 ↾ {𝑧})) ∈ Comp) |
| 108 | | txcmp 23586 |
. . . . . . . . . . . . . 14
⊢
(((∏t‘(𝐹 ↾ 𝑦)) ∈ Comp ∧
(∏t‘(𝐹 ↾ {𝑧})) ∈ Comp) →
((∏t‘(𝐹 ↾ 𝑦)) ×t
(∏t‘(𝐹 ↾ {𝑧}))) ∈ Comp) |
| 109 | 108 | expcom 413 |
. . . . . . . . . . . . 13
⊢
((∏t‘(𝐹 ↾ {𝑧})) ∈ Comp →
((∏t‘(𝐹 ↾ 𝑦)) ∈ Comp →
((∏t‘(𝐹 ↾ 𝑦)) ×t
(∏t‘(𝐹 ↾ {𝑧}))) ∈ Comp)) |
| 110 | 107, 109 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ((∏t‘(𝐹 ↾ 𝑦)) ∈ Comp →
((∏t‘(𝐹 ↾ 𝑦)) ×t
(∏t‘(𝐹 ↾ {𝑧}))) ∈ Comp)) |
| 111 | | cmphmph 23731 |
. . . . . . . . . . . 12
⊢
(((∏t‘(𝐹 ↾ 𝑦)) ×t
(∏t‘(𝐹 ↾ {𝑧}))) ≃ (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) →
(((∏t‘(𝐹 ↾ 𝑦)) ×t
(∏t‘(𝐹 ↾ {𝑧}))) ∈ Comp →
(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp)) |
| 112 | 87, 110, 111 | sylsyld 61 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ((∏t‘(𝐹 ↾ 𝑦)) ∈ Comp →
(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp)) |
| 113 | 112 | expcom 413 |
. . . . . . . . . 10
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
((∏t‘(𝐹 ↾ 𝑦)) ∈ Comp →
(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))) |
| 114 | 113 | a2d 29 |
. . . . . . . . 9
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝑦)) ∈ Comp) → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))) |
| 115 | 114 | ex 412 |
. . . . . . . 8
⊢ (¬
𝑧 ∈ 𝑦 → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝑦)) ∈ Comp) → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp)))) |
| 116 | 115 | a2d 29 |
. . . . . . 7
⊢ (¬
𝑧 ∈ 𝑦 → (((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝑦)) ∈ Comp)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp)))) |
| 117 | 56, 116 | syl5 34 |
. . . . . 6
⊢ (¬
𝑧 ∈ 𝑦 → ((𝑦 ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝑦)) ∈ Comp)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp)))) |
| 118 | 117 | adantl 481 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((𝑦 ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝑦)) ∈ Comp)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp)))) |
| 119 | 14, 20, 26, 32, 52, 118 | findcard2s 9184 |
. . . 4
⊢ (𝐴 ∈ Fin → (𝐴 ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝐴)) ∈ Comp))) |
| 120 | 6, 119 | mpi 20 |
. . 3
⊢ (𝐴 ∈ Fin → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝐴)) ∈ Comp)) |
| 121 | 120 | anabsi5 669 |
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘(𝐹 ↾ 𝐴)) ∈ Comp) |
| 122 | 5, 121 | eqeltrrd 2836 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) →
(∏t‘𝐹) ∈ Comp) |