MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmpfi Structured version   Visualization version   GIF version

Theorem ptcmpfi 23637
Description: A topological product of finitely many compact spaces is compact. This weak version of Tychonoff's theorem does not require the axiom of choice. (Contributed by Mario Carneiro, 8-Feb-2015.)
Assertion
Ref Expression
ptcmpfi ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t𝐹) ∈ Comp)

Proof of Theorem ptcmpfi
Dummy variables 𝑣 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 6717 . . . . 5 (𝐹:𝐴⟶Comp → 𝐹 Fn 𝐴)
2 fnresdm 6669 . . . . 5 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
31, 2syl 17 . . . 4 (𝐹:𝐴⟶Comp → (𝐹𝐴) = 𝐹)
43adantl 481 . . 3 ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (𝐹𝐴) = 𝐹)
54fveq2d 6895 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝐴)) = (∏t𝐹))
6 ssid 4004 . . . 4 𝐴𝐴
7 sseq1 4007 . . . . . 6 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
8 reseq2 5976 . . . . . . . . . 10 (𝑥 = ∅ → (𝐹𝑥) = (𝐹 ↾ ∅))
9 res0 5985 . . . . . . . . . 10 (𝐹 ↾ ∅) = ∅
108, 9eqtrdi 2787 . . . . . . . . 9 (𝑥 = ∅ → (𝐹𝑥) = ∅)
1110fveq2d 6895 . . . . . . . 8 (𝑥 = ∅ → (∏t‘(𝐹𝑥)) = (∏t‘∅))
1211eleq1d 2817 . . . . . . 7 (𝑥 = ∅ → ((∏t‘(𝐹𝑥)) ∈ Comp ↔ (∏t‘∅) ∈ Comp))
1312imbi2d 340 . . . . . 6 (𝑥 = ∅ → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp) ↔ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘∅) ∈ Comp)))
147, 13imbi12d 344 . . . . 5 (𝑥 = ∅ → ((𝑥𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp)) ↔ (∅ ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘∅) ∈ Comp))))
15 sseq1 4007 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
16 reseq2 5976 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1716fveq2d 6895 . . . . . . . 8 (𝑥 = 𝑦 → (∏t‘(𝐹𝑥)) = (∏t‘(𝐹𝑦)))
1817eleq1d 2817 . . . . . . 7 (𝑥 = 𝑦 → ((∏t‘(𝐹𝑥)) ∈ Comp ↔ (∏t‘(𝐹𝑦)) ∈ Comp))
1918imbi2d 340 . . . . . 6 (𝑥 = 𝑦 → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp) ↔ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp)))
2015, 19imbi12d 344 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp)) ↔ (𝑦𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp))))
21 sseq1 4007 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
22 reseq2 5976 . . . . . . . . 9 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹𝑥) = (𝐹 ↾ (𝑦 ∪ {𝑧})))
2322fveq2d 6895 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (∏t‘(𝐹𝑥)) = (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))))
2423eleq1d 2817 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((∏t‘(𝐹𝑥)) ∈ Comp ↔ (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))
2524imbi2d 340 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp) ↔ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp)))
2621, 25imbi12d 344 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp)) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))))
27 sseq1 4007 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
28 reseq2 5976 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
2928fveq2d 6895 . . . . . . . 8 (𝑥 = 𝐴 → (∏t‘(𝐹𝑥)) = (∏t‘(𝐹𝐴)))
3029eleq1d 2817 . . . . . . 7 (𝑥 = 𝐴 → ((∏t‘(𝐹𝑥)) ∈ Comp ↔ (∏t‘(𝐹𝐴)) ∈ Comp))
3130imbi2d 340 . . . . . 6 (𝑥 = 𝐴 → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp) ↔ ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝐴)) ∈ Comp)))
3227, 31imbi12d 344 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑥)) ∈ Comp)) ↔ (𝐴𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝐴)) ∈ Comp))))
33 0ex 5307 . . . . . . . . 9 ∅ ∈ V
34 f0 6772 . . . . . . . . 9 ∅:∅⟶Top
35 pttop 23406 . . . . . . . . 9 ((∅ ∈ V ∧ ∅:∅⟶Top) → (∏t‘∅) ∈ Top)
3633, 34, 35mp2an 689 . . . . . . . 8 (∏t‘∅) ∈ Top
37 eqid 2731 . . . . . . . . . . . . 13 (∏t‘∅) = (∏t‘∅)
3837ptuni 23418 . . . . . . . . . . . 12 ((∅ ∈ V ∧ ∅:∅⟶Top) → X𝑥 ∈ ∅ (∅‘𝑥) = (∏t‘∅))
3933, 34, 38mp2an 689 . . . . . . . . . . 11 X𝑥 ∈ ∅ (∅‘𝑥) = (∏t‘∅)
40 ixp0x 8926 . . . . . . . . . . . 12 X𝑥 ∈ ∅ (∅‘𝑥) = {∅}
41 snfi 9050 . . . . . . . . . . . 12 {∅} ∈ Fin
4240, 41eqeltri 2828 . . . . . . . . . . 11 X𝑥 ∈ ∅ (∅‘𝑥) ∈ Fin
4339, 42eqeltrri 2829 . . . . . . . . . 10 (∏t‘∅) ∈ Fin
44 pwfi 9184 . . . . . . . . . 10 ( (∏t‘∅) ∈ Fin ↔ 𝒫 (∏t‘∅) ∈ Fin)
4543, 44mpbi 229 . . . . . . . . 9 𝒫 (∏t‘∅) ∈ Fin
46 pwuni 4949 . . . . . . . . 9 (∏t‘∅) ⊆ 𝒫 (∏t‘∅)
47 ssfi 9179 . . . . . . . . 9 ((𝒫 (∏t‘∅) ∈ Fin ∧ (∏t‘∅) ⊆ 𝒫 (∏t‘∅)) → (∏t‘∅) ∈ Fin)
4845, 46, 47mp2an 689 . . . . . . . 8 (∏t‘∅) ∈ Fin
4936, 48elini 4193 . . . . . . 7 (∏t‘∅) ∈ (Top ∩ Fin)
50 fincmp 23217 . . . . . . 7 ((∏t‘∅) ∈ (Top ∩ Fin) → (∏t‘∅) ∈ Comp)
5149, 50ax-mp 5 . . . . . 6 (∏t‘∅) ∈ Comp
52512a1i 12 . . . . 5 (∅ ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘∅) ∈ Comp))
53 ssun1 4172 . . . . . . . . 9 𝑦 ⊆ (𝑦 ∪ {𝑧})
54 id 22 . . . . . . . . 9 ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
5553, 54sstrid 3993 . . . . . . . 8 ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑦𝐴)
5655imim1i 63 . . . . . . 7 ((𝑦𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp)))
57 eqid 2731 . . . . . . . . . . . . . 14 (∏t‘(𝐹𝑦)) = (∏t‘(𝐹𝑦))
58 eqid 2731 . . . . . . . . . . . . . 14 (∏t‘(𝐹 ↾ {𝑧})) = (∏t‘(𝐹 ↾ {𝑧}))
59 eqid 2731 . . . . . . . . . . . . . 14 (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) = (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧})))
60 resabs1 6011 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ 𝑦) = (𝐹𝑦))
6153, 60ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ 𝑦) = (𝐹𝑦)
6261eqcomi 2740 . . . . . . . . . . . . . . 15 (𝐹𝑦) = ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ 𝑦)
6362fveq2i 6894 . . . . . . . . . . . . . 14 (∏t‘(𝐹𝑦)) = (∏t‘((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ 𝑦))
64 ssun2 4173 . . . . . . . . . . . . . . . . 17 {𝑧} ⊆ (𝑦 ∪ {𝑧})
65 resabs1 6011 . . . . . . . . . . . . . . . . 17 ({𝑧} ⊆ (𝑦 ∪ {𝑧}) → ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ {𝑧}) = (𝐹 ↾ {𝑧}))
6664, 65ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ {𝑧}) = (𝐹 ↾ {𝑧})
6766eqcomi 2740 . . . . . . . . . . . . . . 15 (𝐹 ↾ {𝑧}) = ((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ {𝑧})
6867fveq2i 6894 . . . . . . . . . . . . . 14 (∏t‘(𝐹 ↾ {𝑧})) = (∏t‘((𝐹 ↾ (𝑦 ∪ {𝑧})) ↾ {𝑧}))
69 eqid 2731 . . . . . . . . . . . . . 14 (𝑢 (∏t‘(𝐹𝑦)), 𝑣 (∏t‘(𝐹 ↾ {𝑧})) ↦ (𝑢𝑣)) = (𝑢 (∏t‘(𝐹𝑦)), 𝑣 (∏t‘(𝐹 ↾ {𝑧})) ↦ (𝑢𝑣))
70 vex 3477 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
71 vsnex 5429 . . . . . . . . . . . . . . . 16 {𝑧} ∈ V
7270, 71unex 7737 . . . . . . . . . . . . . . 15 (𝑦 ∪ {𝑧}) ∈ V
7372a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) ∈ V)
74 simplr 766 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝐹:𝐴⟶Comp)
75 cmptop 23219 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ Comp → 𝑥 ∈ Top)
7675ssriv 3986 . . . . . . . . . . . . . . . 16 Comp ⊆ Top
77 fss 6734 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶Comp ∧ Comp ⊆ Top) → 𝐹:𝐴⟶Top)
7874, 76, 77sylancl 585 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝐹:𝐴⟶Top)
79 simprr 770 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
8078, 79fssresd 6758 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹 ↾ (𝑦 ∪ {𝑧})):(𝑦 ∪ {𝑧})⟶Top)
81 eqidd 2732 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
82 simprl 768 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ¬ 𝑧𝑦)
83 disjsn 4715 . . . . . . . . . . . . . . 15 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
8482, 83sylibr 233 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∩ {𝑧}) = ∅)
8557, 58, 59, 63, 68, 69, 73, 80, 81, 84ptunhmeo 23632 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑢 (∏t‘(𝐹𝑦)), 𝑣 (∏t‘(𝐹 ↾ {𝑧})) ↦ (𝑢𝑣)) ∈ (((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧})))Homeo(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧})))))
86 hmphi 23601 . . . . . . . . . . . . 13 ((𝑢 (∏t‘(𝐹𝑦)), 𝑣 (∏t‘(𝐹 ↾ {𝑧})) ↦ (𝑢𝑣)) ∈ (((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧})))Homeo(∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧})))) → ((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ≃ (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))))
8785, 86syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ≃ (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))))
881ad2antlr 724 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝐹 Fn 𝐴)
8964, 79sstrid 3993 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → {𝑧} ⊆ 𝐴)
90 vex 3477 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
9190snss 4789 . . . . . . . . . . . . . . . . 17 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
9289, 91sylibr 233 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧𝐴)
93 fnressn 7158 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐴𝑧𝐴) → (𝐹 ↾ {𝑧}) = {⟨𝑧, (𝐹𝑧)⟩})
9488, 92, 93syl2anc 583 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹 ↾ {𝑧}) = {⟨𝑧, (𝐹𝑧)⟩})
9594fveq2d 6895 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (∏t‘(𝐹 ↾ {𝑧})) = (∏t‘{⟨𝑧, (𝐹𝑧)⟩}))
96 eqid 2731 . . . . . . . . . . . . . . . . 17 (∏t‘{⟨𝑧, (𝐹𝑧)⟩}) = (∏t‘{⟨𝑧, (𝐹𝑧)⟩})
9790a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ V)
9874, 92ffvelcdmd 7087 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹𝑧) ∈ Comp)
9976, 98sselid 3980 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹𝑧) ∈ Top)
100 toptopon2 22740 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑧) ∈ Top ↔ (𝐹𝑧) ∈ (TopOn‘ (𝐹𝑧)))
10199, 100sylib 217 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹𝑧) ∈ (TopOn‘ (𝐹𝑧)))
10296, 97, 101pt1hmeo 23630 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑥 (𝐹𝑧) ↦ {⟨𝑧, 𝑥⟩}) ∈ ((𝐹𝑧)Homeo(∏t‘{⟨𝑧, (𝐹𝑧)⟩})))
103 hmphi 23601 . . . . . . . . . . . . . . . 16 ((𝑥 (𝐹𝑧) ↦ {⟨𝑧, 𝑥⟩}) ∈ ((𝐹𝑧)Homeo(∏t‘{⟨𝑧, (𝐹𝑧)⟩})) → (𝐹𝑧) ≃ (∏t‘{⟨𝑧, (𝐹𝑧)⟩}))
104102, 103syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝐹𝑧) ≃ (∏t‘{⟨𝑧, (𝐹𝑧)⟩}))
105 cmphmph 23612 . . . . . . . . . . . . . . 15 ((𝐹𝑧) ≃ (∏t‘{⟨𝑧, (𝐹𝑧)⟩}) → ((𝐹𝑧) ∈ Comp → (∏t‘{⟨𝑧, (𝐹𝑧)⟩}) ∈ Comp))
106104, 98, 105sylc 65 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (∏t‘{⟨𝑧, (𝐹𝑧)⟩}) ∈ Comp)
10795, 106eqeltrd 2832 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (∏t‘(𝐹 ↾ {𝑧})) ∈ Comp)
108 txcmp 23467 . . . . . . . . . . . . . 14 (((∏t‘(𝐹𝑦)) ∈ Comp ∧ (∏t‘(𝐹 ↾ {𝑧})) ∈ Comp) → ((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ∈ Comp)
109108expcom 413 . . . . . . . . . . . . 13 ((∏t‘(𝐹 ↾ {𝑧})) ∈ Comp → ((∏t‘(𝐹𝑦)) ∈ Comp → ((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ∈ Comp))
110107, 109syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ((∏t‘(𝐹𝑦)) ∈ Comp → ((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ∈ Comp))
111 cmphmph 23612 . . . . . . . . . . . 12 (((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ≃ (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) → (((∏t‘(𝐹𝑦)) ×t (∏t‘(𝐹 ↾ {𝑧}))) ∈ Comp → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))
11287, 110, 111sylsyld 61 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ((∏t‘(𝐹𝑦)) ∈ Comp → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))
113112expcom 413 . . . . . . . . . 10 ((¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → ((∏t‘(𝐹𝑦)) ∈ Comp → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp)))
114113a2d 29 . . . . . . . . 9 ((¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp) → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp)))
115114ex 412 . . . . . . . 8 𝑧𝑦 → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp) → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))))
116115a2d 29 . . . . . . 7 𝑧𝑦 → (((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))))
11756, 116syl5 34 . . . . . 6 𝑧𝑦 → ((𝑦𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))))
118117adantl 481 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝑦𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝑦)) ∈ Comp)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹 ↾ (𝑦 ∪ {𝑧}))) ∈ Comp))))
11914, 20, 26, 32, 52, 118findcard2s 9171 . . . 4 (𝐴 ∈ Fin → (𝐴𝐴 → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝐴)) ∈ Comp)))
1206, 119mpi 20 . . 3 (𝐴 ∈ Fin → ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝐴)) ∈ Comp))
121120anabsi5 666 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t‘(𝐹𝐴)) ∈ Comp)
1225, 121eqeltrrd 2833 1 ((𝐴 ∈ Fin ∧ 𝐹:𝐴⟶Comp) → (∏t𝐹) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  cun 3946  cin 3947  wss 3948  c0 4322  𝒫 cpw 4602  {csn 4628  cop 4634   cuni 4908   class class class wbr 5148  cmpt 5231  cres 5678   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7412  cmpo 7414  Xcixp 8897  Fincfn 8945  tcpt 17391  Topctop 22715  TopOnctopon 22732  Compccmp 23210   ×t ctx 23384  Homeochmeo 23577  chmph 23578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-1o 8472  df-er 8709  df-map 8828  df-ixp 8898  df-en 8946  df-dom 8947  df-fin 8949  df-fi 9412  df-topgen 17396  df-pt 17397  df-top 22716  df-topon 22733  df-bases 22769  df-cn 23051  df-cnp 23052  df-cmp 23211  df-tx 23386  df-hmeo 23579  df-hmph 23580
This theorem is referenced by:  poimirlem30  36982
  Copyright terms: Public domain W3C validator