MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsimpgfindlem1 Structured version   Visualization version   GIF version

Theorem ablsimpgfindlem1 19708
Description: Lemma for ablsimpgfind 19711. An element of an abelian finite simple group which doesn't square to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof shortened by Rohan Ridenour, 31-Oct-2023.)
Hypotheses
Ref Expression
ablsimpgfindlem1.1 𝐵 = (Base‘𝐺)
ablsimpgfindlem1.2 0 = (0g𝐺)
ablsimpgfindlem1.3 · = (.g𝐺)
ablsimpgfindlem1.4 𝑂 = (od‘𝐺)
ablsimpgfindlem1.5 (𝜑𝐺 ∈ Abel)
ablsimpgfindlem1.6 (𝜑𝐺 ∈ SimpGrp)
Assertion
Ref Expression
ablsimpgfindlem1 (((𝜑𝑥𝐵) ∧ (2 · 𝑥) ≠ 0 ) → (𝑂𝑥) ≠ 0)
Distinct variable groups:   𝜑,𝑥   𝑥, 0   𝑥,𝐵
Allowed substitution hints:   · (𝑥)   𝐺(𝑥)   𝑂(𝑥)

Proof of Theorem ablsimpgfindlem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ablsimpgfindlem1.1 . . . 4 𝐵 = (Base‘𝐺)
2 ablsimpgfindlem1.2 . . . 4 0 = (0g𝐺)
3 ablsimpgfindlem1.3 . . . 4 · = (.g𝐺)
4 ablsimpgfindlem1.5 . . . . 5 (𝜑𝐺 ∈ Abel)
543ad2ant1 1132 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝐺 ∈ Abel)
6 ablsimpgfindlem1.6 . . . . 5 (𝜑𝐺 ∈ SimpGrp)
763ad2ant1 1132 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝐺 ∈ SimpGrp)
86simpggrpd 19696 . . . . . 6 (𝜑𝐺 ∈ Grp)
983ad2ant1 1132 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝐺 ∈ Grp)
10 2z 12352 . . . . . 6 2 ∈ ℤ
1110a1i 11 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 2 ∈ ℤ)
12 simp2 1136 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝑥𝐵)
131, 3, 9, 11, 12mulgcld 18723 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → (2 · 𝑥) ∈ 𝐵)
14 simp3 1137 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → (2 · 𝑥) ≠ 0 )
1514neneqd 2950 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → ¬ (2 · 𝑥) = 0 )
161, 2, 3, 5, 7, 13, 15, 12ablsimpg1gend 19706 . . 3 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → ∃𝑦 ∈ ℤ 𝑥 = (𝑦 · (2 · 𝑥)))
17 simprr 770 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝑥 = (𝑦 · (2 · 𝑥)))
18 simpl2 1191 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝑥𝐵)
191, 3mulg1 18709 . . . . . . 7 (𝑥𝐵 → (1 · 𝑥) = 𝑥)
2018, 19syl 17 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (1 · 𝑥) = 𝑥)
219adantr 481 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝐺 ∈ Grp)
22 simprl 768 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝑦 ∈ ℤ)
2310a1i 11 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 2 ∈ ℤ)
241, 3mulgassr 18739 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑦 ∈ ℤ ∧ 2 ∈ ℤ ∧ 𝑥𝐵)) → ((2 · 𝑦) · 𝑥) = (𝑦 · (2 · 𝑥)))
2521, 22, 23, 18, 24syl13anc 1371 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((2 · 𝑦) · 𝑥) = (𝑦 · (2 · 𝑥)))
2617, 20, 253eqtr4rd 2791 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((2 · 𝑦) · 𝑥) = (1 · 𝑥))
2723, 22zmulcld 12431 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (2 · 𝑦) ∈ ℤ)
28 1zzd 12351 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 1 ∈ ℤ)
29 ablsimpgfindlem1.4 . . . . . . 7 𝑂 = (od‘𝐺)
301, 29, 3, 2odcong 19155 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝐵 ∧ ((2 · 𝑦) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝑂𝑥) ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) · 𝑥) = (1 · 𝑥)))
3121, 18, 27, 28, 30syl112anc 1373 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((𝑂𝑥) ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) · 𝑥) = (1 · 𝑥)))
3226, 31mpbird 256 . . . 4 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (𝑂𝑥) ∥ ((2 · 𝑦) − 1))
33 0zd 12331 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 0 ∈ ℤ)
34 zneo 12403 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → (2 · 𝑦) ≠ ((2 · 0) + 1))
35 2t0e0 12142 . . . . . . . . . . . 12 (2 · 0) = 0
3635oveq1i 7281 . . . . . . . . . . 11 ((2 · 0) + 1) = (0 + 1)
37 0p1e1 12095 . . . . . . . . . . 11 (0 + 1) = 1
3836, 37eqtri 2768 . . . . . . . . . 10 ((2 · 0) + 1) = 1
3938a1i 11 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → ((2 · 0) + 1) = 1)
4034, 39neeqtrd 3015 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → (2 · 𝑦) ≠ 1)
41 oveq1 7278 . . . . . . . . . . . . 13 (((2 · 𝑦) − 1) = 0 → (((2 · 𝑦) − 1) + 1) = (0 + 1))
4241, 37eqtr2di 2797 . . . . . . . . . . . 12 (((2 · 𝑦) − 1) = 0 → 1 = (((2 · 𝑦) − 1) + 1))
4342adantl 482 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) − 1) = 0) → 1 = (((2 · 𝑦) − 1) + 1))
44 2cnd 12051 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → 2 ∈ ℂ)
45 zcn 12324 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
4644, 45mulcld 10996 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → (2 · 𝑦) ∈ ℂ)
47 1cnd 10971 . . . . . . . . . . . 12 (((2 · 𝑦) − 1) = 0 → 1 ∈ ℂ)
48 npcan 11230 . . . . . . . . . . . 12 (((2 · 𝑦) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑦) − 1) + 1) = (2 · 𝑦))
4946, 47, 48syl2an 596 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) − 1) = 0) → (((2 · 𝑦) − 1) + 1) = (2 · 𝑦))
5043, 49eqtr2d 2781 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) − 1) = 0) → (2 · 𝑦) = 1)
5150ex 413 . . . . . . . . 9 (𝑦 ∈ ℤ → (((2 · 𝑦) − 1) = 0 → (2 · 𝑦) = 1))
5251necon3ad 2958 . . . . . . . 8 (𝑦 ∈ ℤ → ((2 · 𝑦) ≠ 1 → ¬ ((2 · 𝑦) − 1) = 0))
5340, 52syl5 34 . . . . . . 7 (𝑦 ∈ ℤ → ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → ¬ ((2 · 𝑦) − 1) = 0))
5453anabsi5 666 . . . . . 6 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → ¬ ((2 · 𝑦) − 1) = 0)
5522, 33, 54syl2anc 584 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ¬ ((2 · 𝑦) − 1) = 0)
5627, 28zsubcld 12430 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((2 · 𝑦) − 1) ∈ ℤ)
57 0dvds 15984 . . . . . 6 (((2 · 𝑦) − 1) ∈ ℤ → (0 ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) − 1) = 0))
5856, 57syl 17 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (0 ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) − 1) = 0))
5955, 58mtbird 325 . . . 4 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ¬ 0 ∥ ((2 · 𝑦) − 1))
60 nbrne2 5099 . . . 4 (((𝑂𝑥) ∥ ((2 · 𝑦) − 1) ∧ ¬ 0 ∥ ((2 · 𝑦) − 1)) → (𝑂𝑥) ≠ 0)
6132, 59, 60syl2anc 584 . . 3 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (𝑂𝑥) ≠ 0)
6216, 61rexlimddv 3222 . 2 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → (𝑂𝑥) ≠ 0)
63623expa 1117 1 (((𝜑𝑥𝐵) ∧ (2 · 𝑥) ≠ 0 ) → (𝑂𝑥) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  cfv 6432  (class class class)co 7271  cc 10870  0cc0 10872  1c1 10873   + caddc 10875   · cmul 10877  cmin 11205  2c2 12028  cz 12319  cdvds 15961  Basecbs 16910  0gc0g 17148  Grpcgrp 18575  .gcmg 18698  odcod 19130  Abelcabl 19385  SimpGrpcsimpg 19691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-fz 13239  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-dvds 15962  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-minusg 18579  df-sbg 18580  df-mulg 18699  df-subg 18750  df-nsg 18751  df-od 19134  df-cmn 19386  df-abl 19387  df-simpg 19692
This theorem is referenced by:  ablsimpgfind  19711
  Copyright terms: Public domain W3C validator