MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsimpgfindlem1 Structured version   Visualization version   GIF version

Theorem ablsimpgfindlem1 19900
Description: Lemma for ablsimpgfind 19903. An element of an abelian finite simple group which doesn't square to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof shortened by Rohan Ridenour, 31-Oct-2023.)
Hypotheses
Ref Expression
ablsimpgfindlem1.1 𝐵 = (Base‘𝐺)
ablsimpgfindlem1.2 0 = (0g𝐺)
ablsimpgfindlem1.3 · = (.g𝐺)
ablsimpgfindlem1.4 𝑂 = (od‘𝐺)
ablsimpgfindlem1.5 (𝜑𝐺 ∈ Abel)
ablsimpgfindlem1.6 (𝜑𝐺 ∈ SimpGrp)
Assertion
Ref Expression
ablsimpgfindlem1 (((𝜑𝑥𝐵) ∧ (2 · 𝑥) ≠ 0 ) → (𝑂𝑥) ≠ 0)
Distinct variable groups:   𝜑,𝑥   𝑥, 0   𝑥,𝐵
Allowed substitution hints:   · (𝑥)   𝐺(𝑥)   𝑂(𝑥)

Proof of Theorem ablsimpgfindlem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ablsimpgfindlem1.1 . . . 4 𝐵 = (Base‘𝐺)
2 ablsimpgfindlem1.2 . . . 4 0 = (0g𝐺)
3 ablsimpgfindlem1.3 . . . 4 · = (.g𝐺)
4 ablsimpgfindlem1.5 . . . . 5 (𝜑𝐺 ∈ Abel)
543ad2ant1 1133 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝐺 ∈ Abel)
6 ablsimpgfindlem1.6 . . . . 5 (𝜑𝐺 ∈ SimpGrp)
763ad2ant1 1133 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝐺 ∈ SimpGrp)
86simpggrpd 19888 . . . . . 6 (𝜑𝐺 ∈ Grp)
983ad2ant1 1133 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝐺 ∈ Grp)
10 2z 12544 . . . . . 6 2 ∈ ℤ
1110a1i 11 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 2 ∈ ℤ)
12 simp2 1137 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝑥𝐵)
131, 3, 9, 11, 12mulgcld 18912 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → (2 · 𝑥) ∈ 𝐵)
14 simp3 1138 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → (2 · 𝑥) ≠ 0 )
1514neneqd 2944 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → ¬ (2 · 𝑥) = 0 )
161, 2, 3, 5, 7, 13, 15, 12ablsimpg1gend 19898 . . 3 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → ∃𝑦 ∈ ℤ 𝑥 = (𝑦 · (2 · 𝑥)))
17 simprr 771 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝑥 = (𝑦 · (2 · 𝑥)))
18 simpl2 1192 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝑥𝐵)
191, 3mulg1 18897 . . . . . . 7 (𝑥𝐵 → (1 · 𝑥) = 𝑥)
2018, 19syl 17 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (1 · 𝑥) = 𝑥)
219adantr 481 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝐺 ∈ Grp)
22 simprl 769 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝑦 ∈ ℤ)
2310a1i 11 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 2 ∈ ℤ)
241, 3mulgassr 18928 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑦 ∈ ℤ ∧ 2 ∈ ℤ ∧ 𝑥𝐵)) → ((2 · 𝑦) · 𝑥) = (𝑦 · (2 · 𝑥)))
2521, 22, 23, 18, 24syl13anc 1372 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((2 · 𝑦) · 𝑥) = (𝑦 · (2 · 𝑥)))
2617, 20, 253eqtr4rd 2782 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((2 · 𝑦) · 𝑥) = (1 · 𝑥))
2723, 22zmulcld 12622 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (2 · 𝑦) ∈ ℤ)
28 1zzd 12543 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 1 ∈ ℤ)
29 ablsimpgfindlem1.4 . . . . . . 7 𝑂 = (od‘𝐺)
301, 29, 3, 2odcong 19345 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝐵 ∧ ((2 · 𝑦) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝑂𝑥) ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) · 𝑥) = (1 · 𝑥)))
3121, 18, 27, 28, 30syl112anc 1374 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((𝑂𝑥) ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) · 𝑥) = (1 · 𝑥)))
3226, 31mpbird 256 . . . 4 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (𝑂𝑥) ∥ ((2 · 𝑦) − 1))
33 0zd 12520 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 0 ∈ ℤ)
34 zneo 12595 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → (2 · 𝑦) ≠ ((2 · 0) + 1))
35 2t0e0 12331 . . . . . . . . . . . 12 (2 · 0) = 0
3635oveq1i 7372 . . . . . . . . . . 11 ((2 · 0) + 1) = (0 + 1)
37 0p1e1 12284 . . . . . . . . . . 11 (0 + 1) = 1
3836, 37eqtri 2759 . . . . . . . . . 10 ((2 · 0) + 1) = 1
3938a1i 11 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → ((2 · 0) + 1) = 1)
4034, 39neeqtrd 3009 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → (2 · 𝑦) ≠ 1)
41 oveq1 7369 . . . . . . . . . . . . 13 (((2 · 𝑦) − 1) = 0 → (((2 · 𝑦) − 1) + 1) = (0 + 1))
4241, 37eqtr2di 2788 . . . . . . . . . . . 12 (((2 · 𝑦) − 1) = 0 → 1 = (((2 · 𝑦) − 1) + 1))
4342adantl 482 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) − 1) = 0) → 1 = (((2 · 𝑦) − 1) + 1))
44 2cnd 12240 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → 2 ∈ ℂ)
45 zcn 12513 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
4644, 45mulcld 11184 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → (2 · 𝑦) ∈ ℂ)
47 1cnd 11159 . . . . . . . . . . . 12 (((2 · 𝑦) − 1) = 0 → 1 ∈ ℂ)
48 npcan 11419 . . . . . . . . . . . 12 (((2 · 𝑦) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑦) − 1) + 1) = (2 · 𝑦))
4946, 47, 48syl2an 596 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) − 1) = 0) → (((2 · 𝑦) − 1) + 1) = (2 · 𝑦))
5043, 49eqtr2d 2772 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) − 1) = 0) → (2 · 𝑦) = 1)
5150ex 413 . . . . . . . . 9 (𝑦 ∈ ℤ → (((2 · 𝑦) − 1) = 0 → (2 · 𝑦) = 1))
5251necon3ad 2952 . . . . . . . 8 (𝑦 ∈ ℤ → ((2 · 𝑦) ≠ 1 → ¬ ((2 · 𝑦) − 1) = 0))
5340, 52syl5 34 . . . . . . 7 (𝑦 ∈ ℤ → ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → ¬ ((2 · 𝑦) − 1) = 0))
5453anabsi5 667 . . . . . 6 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → ¬ ((2 · 𝑦) − 1) = 0)
5522, 33, 54syl2anc 584 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ¬ ((2 · 𝑦) − 1) = 0)
5627, 28zsubcld 12621 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((2 · 𝑦) − 1) ∈ ℤ)
57 0dvds 16170 . . . . . 6 (((2 · 𝑦) − 1) ∈ ℤ → (0 ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) − 1) = 0))
5856, 57syl 17 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (0 ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) − 1) = 0))
5955, 58mtbird 324 . . . 4 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ¬ 0 ∥ ((2 · 𝑦) − 1))
60 nbrne2 5130 . . . 4 (((𝑂𝑥) ∥ ((2 · 𝑦) − 1) ∧ ¬ 0 ∥ ((2 · 𝑦) − 1)) → (𝑂𝑥) ≠ 0)
6132, 59, 60syl2anc 584 . . 3 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (𝑂𝑥) ≠ 0)
6216, 61rexlimddv 3154 . 2 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → (𝑂𝑥) ≠ 0)
63623expa 1118 1 (((𝜑𝑥𝐵) ∧ (2 · 𝑥) ≠ 0 ) → (𝑂𝑥) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939   class class class wbr 5110  cfv 6501  (class class class)co 7362  cc 11058  0cc0 11060  1c1 11061   + caddc 11063   · cmul 11065  cmin 11394  2c2 12217  cz 12508  cdvds 16147  Basecbs 17094  0gc0g 17335  Grpcgrp 18762  .gcmg 18886  odcod 19320  Abelcabl 19577  SimpGrpcsimpg 19883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9387  df-inf 9388  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-n0 12423  df-z 12509  df-uz 12773  df-rp 12925  df-fz 13435  df-fl 13707  df-mod 13785  df-seq 13917  df-exp 13978  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-dvds 16148  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-0g 17337  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-submnd 18616  df-grp 18765  df-minusg 18766  df-sbg 18767  df-mulg 18887  df-subg 18939  df-nsg 18940  df-od 19324  df-cmn 19578  df-abl 19579  df-simpg 19884
This theorem is referenced by:  ablsimpgfind  19903
  Copyright terms: Public domain W3C validator