MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsimpgfindlem1 Structured version   Visualization version   GIF version

Theorem ablsimpgfindlem1 20021
Description: Lemma for ablsimpgfind 20024. An element of an abelian finite simple group which doesn't square to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof shortened by Rohan Ridenour, 31-Oct-2023.)
Hypotheses
Ref Expression
ablsimpgfindlem1.1 𝐵 = (Base‘𝐺)
ablsimpgfindlem1.2 0 = (0g𝐺)
ablsimpgfindlem1.3 · = (.g𝐺)
ablsimpgfindlem1.4 𝑂 = (od‘𝐺)
ablsimpgfindlem1.5 (𝜑𝐺 ∈ Abel)
ablsimpgfindlem1.6 (𝜑𝐺 ∈ SimpGrp)
Assertion
Ref Expression
ablsimpgfindlem1 (((𝜑𝑥𝐵) ∧ (2 · 𝑥) ≠ 0 ) → (𝑂𝑥) ≠ 0)
Distinct variable groups:   𝜑,𝑥   𝑥, 0   𝑥,𝐵
Allowed substitution hints:   · (𝑥)   𝐺(𝑥)   𝑂(𝑥)

Proof of Theorem ablsimpgfindlem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ablsimpgfindlem1.1 . . . 4 𝐵 = (Base‘𝐺)
2 ablsimpgfindlem1.2 . . . 4 0 = (0g𝐺)
3 ablsimpgfindlem1.3 . . . 4 · = (.g𝐺)
4 ablsimpgfindlem1.5 . . . . 5 (𝜑𝐺 ∈ Abel)
543ad2ant1 1133 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝐺 ∈ Abel)
6 ablsimpgfindlem1.6 . . . . 5 (𝜑𝐺 ∈ SimpGrp)
763ad2ant1 1133 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝐺 ∈ SimpGrp)
86simpggrpd 20009 . . . . . 6 (𝜑𝐺 ∈ Grp)
983ad2ant1 1133 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝐺 ∈ Grp)
10 2z 12504 . . . . . 6 2 ∈ ℤ
1110a1i 11 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 2 ∈ ℤ)
12 simp2 1137 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝑥𝐵)
131, 3, 9, 11, 12mulgcld 19009 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → (2 · 𝑥) ∈ 𝐵)
14 simp3 1138 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → (2 · 𝑥) ≠ 0 )
1514neneqd 2933 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → ¬ (2 · 𝑥) = 0 )
161, 2, 3, 5, 7, 13, 15, 12ablsimpg1gend 20019 . . 3 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → ∃𝑦 ∈ ℤ 𝑥 = (𝑦 · (2 · 𝑥)))
17 simprr 772 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝑥 = (𝑦 · (2 · 𝑥)))
18 simpl2 1193 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝑥𝐵)
191, 3mulg1 18994 . . . . . . 7 (𝑥𝐵 → (1 · 𝑥) = 𝑥)
2018, 19syl 17 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (1 · 𝑥) = 𝑥)
219adantr 480 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝐺 ∈ Grp)
22 simprl 770 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝑦 ∈ ℤ)
2310a1i 11 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 2 ∈ ℤ)
241, 3mulgassr 19025 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑦 ∈ ℤ ∧ 2 ∈ ℤ ∧ 𝑥𝐵)) → ((2 · 𝑦) · 𝑥) = (𝑦 · (2 · 𝑥)))
2521, 22, 23, 18, 24syl13anc 1374 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((2 · 𝑦) · 𝑥) = (𝑦 · (2 · 𝑥)))
2617, 20, 253eqtr4rd 2777 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((2 · 𝑦) · 𝑥) = (1 · 𝑥))
2723, 22zmulcld 12583 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (2 · 𝑦) ∈ ℤ)
28 1zzd 12503 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 1 ∈ ℤ)
29 ablsimpgfindlem1.4 . . . . . . 7 𝑂 = (od‘𝐺)
301, 29, 3, 2odcong 19461 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝐵 ∧ ((2 · 𝑦) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝑂𝑥) ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) · 𝑥) = (1 · 𝑥)))
3121, 18, 27, 28, 30syl112anc 1376 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((𝑂𝑥) ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) · 𝑥) = (1 · 𝑥)))
3226, 31mpbird 257 . . . 4 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (𝑂𝑥) ∥ ((2 · 𝑦) − 1))
33 0zd 12480 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 0 ∈ ℤ)
34 zneo 12556 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → (2 · 𝑦) ≠ ((2 · 0) + 1))
35 2t0e0 12289 . . . . . . . . . . . 12 (2 · 0) = 0
3635oveq1i 7356 . . . . . . . . . . 11 ((2 · 0) + 1) = (0 + 1)
37 0p1e1 12242 . . . . . . . . . . 11 (0 + 1) = 1
3836, 37eqtri 2754 . . . . . . . . . 10 ((2 · 0) + 1) = 1
3938a1i 11 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → ((2 · 0) + 1) = 1)
4034, 39neeqtrd 2997 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → (2 · 𝑦) ≠ 1)
41 oveq1 7353 . . . . . . . . . . . . 13 (((2 · 𝑦) − 1) = 0 → (((2 · 𝑦) − 1) + 1) = (0 + 1))
4241, 37eqtr2di 2783 . . . . . . . . . . . 12 (((2 · 𝑦) − 1) = 0 → 1 = (((2 · 𝑦) − 1) + 1))
4342adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) − 1) = 0) → 1 = (((2 · 𝑦) − 1) + 1))
44 2cnd 12203 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → 2 ∈ ℂ)
45 zcn 12473 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
4644, 45mulcld 11132 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → (2 · 𝑦) ∈ ℂ)
47 1cnd 11107 . . . . . . . . . . . 12 (((2 · 𝑦) − 1) = 0 → 1 ∈ ℂ)
48 npcan 11369 . . . . . . . . . . . 12 (((2 · 𝑦) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑦) − 1) + 1) = (2 · 𝑦))
4946, 47, 48syl2an 596 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) − 1) = 0) → (((2 · 𝑦) − 1) + 1) = (2 · 𝑦))
5043, 49eqtr2d 2767 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) − 1) = 0) → (2 · 𝑦) = 1)
5150ex 412 . . . . . . . . 9 (𝑦 ∈ ℤ → (((2 · 𝑦) − 1) = 0 → (2 · 𝑦) = 1))
5251necon3ad 2941 . . . . . . . 8 (𝑦 ∈ ℤ → ((2 · 𝑦) ≠ 1 → ¬ ((2 · 𝑦) − 1) = 0))
5340, 52syl5 34 . . . . . . 7 (𝑦 ∈ ℤ → ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → ¬ ((2 · 𝑦) − 1) = 0))
5453anabsi5 669 . . . . . 6 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → ¬ ((2 · 𝑦) − 1) = 0)
5522, 33, 54syl2anc 584 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ¬ ((2 · 𝑦) − 1) = 0)
5627, 28zsubcld 12582 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((2 · 𝑦) − 1) ∈ ℤ)
57 0dvds 16187 . . . . . 6 (((2 · 𝑦) − 1) ∈ ℤ → (0 ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) − 1) = 0))
5856, 57syl 17 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (0 ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) − 1) = 0))
5955, 58mtbird 325 . . . 4 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ¬ 0 ∥ ((2 · 𝑦) − 1))
60 nbrne2 5109 . . . 4 (((𝑂𝑥) ∥ ((2 · 𝑦) − 1) ∧ ¬ 0 ∥ ((2 · 𝑦) − 1)) → (𝑂𝑥) ≠ 0)
6132, 59, 60syl2anc 584 . . 3 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (𝑂𝑥) ≠ 0)
6216, 61rexlimddv 3139 . 2 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → (𝑂𝑥) ≠ 0)
63623expa 1118 1 (((𝜑𝑥𝐵) ∧ (2 · 𝑥) ≠ 0 ) → (𝑂𝑥) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344  2c2 12180  cz 12468  cdvds 16163  Basecbs 17120  0gc0g 17343  Grpcgrp 18846  .gcmg 18980  odcod 19436  Abelcabl 19693  SimpGrpcsimpg 20004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-nsg 19037  df-od 19440  df-cmn 19694  df-abl 19695  df-simpg 20005
This theorem is referenced by:  ablsimpgfind  20024
  Copyright terms: Public domain W3C validator