MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsimpgfindlem1 Structured version   Visualization version   GIF version

Theorem ablsimpgfindlem1 19988
Description: Lemma for ablsimpgfind 19991. An element of an abelian finite simple group which doesn't square to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof shortened by Rohan Ridenour, 31-Oct-2023.)
Hypotheses
Ref Expression
ablsimpgfindlem1.1 𝐵 = (Base‘𝐺)
ablsimpgfindlem1.2 0 = (0g𝐺)
ablsimpgfindlem1.3 · = (.g𝐺)
ablsimpgfindlem1.4 𝑂 = (od‘𝐺)
ablsimpgfindlem1.5 (𝜑𝐺 ∈ Abel)
ablsimpgfindlem1.6 (𝜑𝐺 ∈ SimpGrp)
Assertion
Ref Expression
ablsimpgfindlem1 (((𝜑𝑥𝐵) ∧ (2 · 𝑥) ≠ 0 ) → (𝑂𝑥) ≠ 0)
Distinct variable groups:   𝜑,𝑥   𝑥, 0   𝑥,𝐵
Allowed substitution hints:   · (𝑥)   𝐺(𝑥)   𝑂(𝑥)

Proof of Theorem ablsimpgfindlem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ablsimpgfindlem1.1 . . . 4 𝐵 = (Base‘𝐺)
2 ablsimpgfindlem1.2 . . . 4 0 = (0g𝐺)
3 ablsimpgfindlem1.3 . . . 4 · = (.g𝐺)
4 ablsimpgfindlem1.5 . . . . 5 (𝜑𝐺 ∈ Abel)
543ad2ant1 1133 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝐺 ∈ Abel)
6 ablsimpgfindlem1.6 . . . . 5 (𝜑𝐺 ∈ SimpGrp)
763ad2ant1 1133 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝐺 ∈ SimpGrp)
86simpggrpd 19976 . . . . . 6 (𝜑𝐺 ∈ Grp)
983ad2ant1 1133 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝐺 ∈ Grp)
10 2z 12507 . . . . . 6 2 ∈ ℤ
1110a1i 11 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 2 ∈ ℤ)
12 simp2 1137 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝑥𝐵)
131, 3, 9, 11, 12mulgcld 18975 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → (2 · 𝑥) ∈ 𝐵)
14 simp3 1138 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → (2 · 𝑥) ≠ 0 )
1514neneqd 2930 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → ¬ (2 · 𝑥) = 0 )
161, 2, 3, 5, 7, 13, 15, 12ablsimpg1gend 19986 . . 3 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → ∃𝑦 ∈ ℤ 𝑥 = (𝑦 · (2 · 𝑥)))
17 simprr 772 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝑥 = (𝑦 · (2 · 𝑥)))
18 simpl2 1193 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝑥𝐵)
191, 3mulg1 18960 . . . . . . 7 (𝑥𝐵 → (1 · 𝑥) = 𝑥)
2018, 19syl 17 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (1 · 𝑥) = 𝑥)
219adantr 480 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝐺 ∈ Grp)
22 simprl 770 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝑦 ∈ ℤ)
2310a1i 11 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 2 ∈ ℤ)
241, 3mulgassr 18991 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑦 ∈ ℤ ∧ 2 ∈ ℤ ∧ 𝑥𝐵)) → ((2 · 𝑦) · 𝑥) = (𝑦 · (2 · 𝑥)))
2521, 22, 23, 18, 24syl13anc 1374 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((2 · 𝑦) · 𝑥) = (𝑦 · (2 · 𝑥)))
2617, 20, 253eqtr4rd 2775 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((2 · 𝑦) · 𝑥) = (1 · 𝑥))
2723, 22zmulcld 12586 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (2 · 𝑦) ∈ ℤ)
28 1zzd 12506 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 1 ∈ ℤ)
29 ablsimpgfindlem1.4 . . . . . . 7 𝑂 = (od‘𝐺)
301, 29, 3, 2odcong 19428 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝐵 ∧ ((2 · 𝑦) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝑂𝑥) ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) · 𝑥) = (1 · 𝑥)))
3121, 18, 27, 28, 30syl112anc 1376 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((𝑂𝑥) ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) · 𝑥) = (1 · 𝑥)))
3226, 31mpbird 257 . . . 4 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (𝑂𝑥) ∥ ((2 · 𝑦) − 1))
33 0zd 12483 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 0 ∈ ℤ)
34 zneo 12559 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → (2 · 𝑦) ≠ ((2 · 0) + 1))
35 2t0e0 12292 . . . . . . . . . . . 12 (2 · 0) = 0
3635oveq1i 7359 . . . . . . . . . . 11 ((2 · 0) + 1) = (0 + 1)
37 0p1e1 12245 . . . . . . . . . . 11 (0 + 1) = 1
3836, 37eqtri 2752 . . . . . . . . . 10 ((2 · 0) + 1) = 1
3938a1i 11 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → ((2 · 0) + 1) = 1)
4034, 39neeqtrd 2994 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → (2 · 𝑦) ≠ 1)
41 oveq1 7356 . . . . . . . . . . . . 13 (((2 · 𝑦) − 1) = 0 → (((2 · 𝑦) − 1) + 1) = (0 + 1))
4241, 37eqtr2di 2781 . . . . . . . . . . . 12 (((2 · 𝑦) − 1) = 0 → 1 = (((2 · 𝑦) − 1) + 1))
4342adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) − 1) = 0) → 1 = (((2 · 𝑦) − 1) + 1))
44 2cnd 12206 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → 2 ∈ ℂ)
45 zcn 12476 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
4644, 45mulcld 11135 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → (2 · 𝑦) ∈ ℂ)
47 1cnd 11110 . . . . . . . . . . . 12 (((2 · 𝑦) − 1) = 0 → 1 ∈ ℂ)
48 npcan 11372 . . . . . . . . . . . 12 (((2 · 𝑦) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑦) − 1) + 1) = (2 · 𝑦))
4946, 47, 48syl2an 596 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) − 1) = 0) → (((2 · 𝑦) − 1) + 1) = (2 · 𝑦))
5043, 49eqtr2d 2765 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) − 1) = 0) → (2 · 𝑦) = 1)
5150ex 412 . . . . . . . . 9 (𝑦 ∈ ℤ → (((2 · 𝑦) − 1) = 0 → (2 · 𝑦) = 1))
5251necon3ad 2938 . . . . . . . 8 (𝑦 ∈ ℤ → ((2 · 𝑦) ≠ 1 → ¬ ((2 · 𝑦) − 1) = 0))
5340, 52syl5 34 . . . . . . 7 (𝑦 ∈ ℤ → ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → ¬ ((2 · 𝑦) − 1) = 0))
5453anabsi5 669 . . . . . 6 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → ¬ ((2 · 𝑦) − 1) = 0)
5522, 33, 54syl2anc 584 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ¬ ((2 · 𝑦) − 1) = 0)
5627, 28zsubcld 12585 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((2 · 𝑦) − 1) ∈ ℤ)
57 0dvds 16187 . . . . . 6 (((2 · 𝑦) − 1) ∈ ℤ → (0 ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) − 1) = 0))
5856, 57syl 17 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (0 ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) − 1) = 0))
5955, 58mtbird 325 . . . 4 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ¬ 0 ∥ ((2 · 𝑦) − 1))
60 nbrne2 5112 . . . 4 (((𝑂𝑥) ∥ ((2 · 𝑦) − 1) ∧ ¬ 0 ∥ ((2 · 𝑦) − 1)) → (𝑂𝑥) ≠ 0)
6132, 59, 60syl2anc 584 . . 3 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (𝑂𝑥) ≠ 0)
6216, 61rexlimddv 3136 . 2 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → (𝑂𝑥) ≠ 0)
63623expa 1118 1 (((𝜑𝑥𝐵) ∧ (2 · 𝑥) ≠ 0 ) → (𝑂𝑥) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347  2c2 12183  cz 12471  cdvds 16163  Basecbs 17120  0gc0g 17343  Grpcgrp 18812  .gcmg 18946  odcod 19403  Abelcabl 19660  SimpGrpcsimpg 19971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-nsg 19003  df-od 19407  df-cmn 19661  df-abl 19662  df-simpg 19972
This theorem is referenced by:  ablsimpgfind  19991
  Copyright terms: Public domain W3C validator