MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsimpgfindlem1 Structured version   Visualization version   GIF version

Theorem ablsimpgfindlem1 19710
Description: Lemma for ablsimpgfind 19713. An element of an abelian finite simple group which doesn't square to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof shortened by Rohan Ridenour, 31-Oct-2023.)
Hypotheses
Ref Expression
ablsimpgfindlem1.1 𝐵 = (Base‘𝐺)
ablsimpgfindlem1.2 0 = (0g𝐺)
ablsimpgfindlem1.3 · = (.g𝐺)
ablsimpgfindlem1.4 𝑂 = (od‘𝐺)
ablsimpgfindlem1.5 (𝜑𝐺 ∈ Abel)
ablsimpgfindlem1.6 (𝜑𝐺 ∈ SimpGrp)
Assertion
Ref Expression
ablsimpgfindlem1 (((𝜑𝑥𝐵) ∧ (2 · 𝑥) ≠ 0 ) → (𝑂𝑥) ≠ 0)
Distinct variable groups:   𝜑,𝑥   𝑥, 0   𝑥,𝐵
Allowed substitution hints:   · (𝑥)   𝐺(𝑥)   𝑂(𝑥)

Proof of Theorem ablsimpgfindlem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ablsimpgfindlem1.1 . . . 4 𝐵 = (Base‘𝐺)
2 ablsimpgfindlem1.2 . . . 4 0 = (0g𝐺)
3 ablsimpgfindlem1.3 . . . 4 · = (.g𝐺)
4 ablsimpgfindlem1.5 . . . . 5 (𝜑𝐺 ∈ Abel)
543ad2ant1 1132 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝐺 ∈ Abel)
6 ablsimpgfindlem1.6 . . . . 5 (𝜑𝐺 ∈ SimpGrp)
763ad2ant1 1132 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝐺 ∈ SimpGrp)
86simpggrpd 19698 . . . . . 6 (𝜑𝐺 ∈ Grp)
983ad2ant1 1132 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝐺 ∈ Grp)
10 2z 12352 . . . . . 6 2 ∈ ℤ
1110a1i 11 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 2 ∈ ℤ)
12 simp2 1136 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → 𝑥𝐵)
131, 3, 9, 11, 12mulgcld 18725 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → (2 · 𝑥) ∈ 𝐵)
14 simp3 1137 . . . . 5 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → (2 · 𝑥) ≠ 0 )
1514neneqd 2948 . . . 4 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → ¬ (2 · 𝑥) = 0 )
161, 2, 3, 5, 7, 13, 15, 12ablsimpg1gend 19708 . . 3 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → ∃𝑦 ∈ ℤ 𝑥 = (𝑦 · (2 · 𝑥)))
17 simprr 770 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝑥 = (𝑦 · (2 · 𝑥)))
18 simpl2 1191 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝑥𝐵)
191, 3mulg1 18711 . . . . . . 7 (𝑥𝐵 → (1 · 𝑥) = 𝑥)
2018, 19syl 17 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (1 · 𝑥) = 𝑥)
219adantr 481 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝐺 ∈ Grp)
22 simprl 768 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 𝑦 ∈ ℤ)
2310a1i 11 . . . . . . 7 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 2 ∈ ℤ)
241, 3mulgassr 18741 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑦 ∈ ℤ ∧ 2 ∈ ℤ ∧ 𝑥𝐵)) → ((2 · 𝑦) · 𝑥) = (𝑦 · (2 · 𝑥)))
2521, 22, 23, 18, 24syl13anc 1371 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((2 · 𝑦) · 𝑥) = (𝑦 · (2 · 𝑥)))
2617, 20, 253eqtr4rd 2789 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((2 · 𝑦) · 𝑥) = (1 · 𝑥))
2723, 22zmulcld 12432 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (2 · 𝑦) ∈ ℤ)
28 1zzd 12351 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 1 ∈ ℤ)
29 ablsimpgfindlem1.4 . . . . . . 7 𝑂 = (od‘𝐺)
301, 29, 3, 2odcong 19157 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝐵 ∧ ((2 · 𝑦) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝑂𝑥) ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) · 𝑥) = (1 · 𝑥)))
3121, 18, 27, 28, 30syl112anc 1373 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((𝑂𝑥) ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) · 𝑥) = (1 · 𝑥)))
3226, 31mpbird 256 . . . 4 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (𝑂𝑥) ∥ ((2 · 𝑦) − 1))
33 0zd 12331 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → 0 ∈ ℤ)
34 zneo 12403 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → (2 · 𝑦) ≠ ((2 · 0) + 1))
35 2t0e0 12142 . . . . . . . . . . . 12 (2 · 0) = 0
3635oveq1i 7285 . . . . . . . . . . 11 ((2 · 0) + 1) = (0 + 1)
37 0p1e1 12095 . . . . . . . . . . 11 (0 + 1) = 1
3836, 37eqtri 2766 . . . . . . . . . 10 ((2 · 0) + 1) = 1
3938a1i 11 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → ((2 · 0) + 1) = 1)
4034, 39neeqtrd 3013 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → (2 · 𝑦) ≠ 1)
41 oveq1 7282 . . . . . . . . . . . . 13 (((2 · 𝑦) − 1) = 0 → (((2 · 𝑦) − 1) + 1) = (0 + 1))
4241, 37eqtr2di 2795 . . . . . . . . . . . 12 (((2 · 𝑦) − 1) = 0 → 1 = (((2 · 𝑦) − 1) + 1))
4342adantl 482 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) − 1) = 0) → 1 = (((2 · 𝑦) − 1) + 1))
44 2cnd 12051 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → 2 ∈ ℂ)
45 zcn 12324 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
4644, 45mulcld 10995 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → (2 · 𝑦) ∈ ℂ)
47 1cnd 10970 . . . . . . . . . . . 12 (((2 · 𝑦) − 1) = 0 → 1 ∈ ℂ)
48 npcan 11230 . . . . . . . . . . . 12 (((2 · 𝑦) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑦) − 1) + 1) = (2 · 𝑦))
4946, 47, 48syl2an 596 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) − 1) = 0) → (((2 · 𝑦) − 1) + 1) = (2 · 𝑦))
5043, 49eqtr2d 2779 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ ((2 · 𝑦) − 1) = 0) → (2 · 𝑦) = 1)
5150ex 413 . . . . . . . . 9 (𝑦 ∈ ℤ → (((2 · 𝑦) − 1) = 0 → (2 · 𝑦) = 1))
5251necon3ad 2956 . . . . . . . 8 (𝑦 ∈ ℤ → ((2 · 𝑦) ≠ 1 → ¬ ((2 · 𝑦) − 1) = 0))
5340, 52syl5 34 . . . . . . 7 (𝑦 ∈ ℤ → ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → ¬ ((2 · 𝑦) − 1) = 0))
5453anabsi5 666 . . . . . 6 ((𝑦 ∈ ℤ ∧ 0 ∈ ℤ) → ¬ ((2 · 𝑦) − 1) = 0)
5522, 33, 54syl2anc 584 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ¬ ((2 · 𝑦) − 1) = 0)
5627, 28zsubcld 12431 . . . . . 6 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ((2 · 𝑦) − 1) ∈ ℤ)
57 0dvds 15986 . . . . . 6 (((2 · 𝑦) − 1) ∈ ℤ → (0 ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) − 1) = 0))
5856, 57syl 17 . . . . 5 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (0 ∥ ((2 · 𝑦) − 1) ↔ ((2 · 𝑦) − 1) = 0))
5955, 58mtbird 325 . . . 4 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → ¬ 0 ∥ ((2 · 𝑦) − 1))
60 nbrne2 5094 . . . 4 (((𝑂𝑥) ∥ ((2 · 𝑦) − 1) ∧ ¬ 0 ∥ ((2 · 𝑦) − 1)) → (𝑂𝑥) ≠ 0)
6132, 59, 60syl2anc 584 . . 3 (((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) ∧ (𝑦 ∈ ℤ ∧ 𝑥 = (𝑦 · (2 · 𝑥)))) → (𝑂𝑥) ≠ 0)
6216, 61rexlimddv 3220 . 2 ((𝜑𝑥𝐵 ∧ (2 · 𝑥) ≠ 0 ) → (𝑂𝑥) ≠ 0)
63623expa 1117 1 (((𝜑𝑥𝐵) ∧ (2 · 𝑥) ≠ 0 ) → (𝑂𝑥) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  2c2 12028  cz 12319  cdvds 15963  Basecbs 16912  0gc0g 17150  Grpcgrp 18577  .gcmg 18700  odcod 19132  Abelcabl 19387  SimpGrpcsimpg 19693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-nsg 18753  df-od 19136  df-cmn 19388  df-abl 19389  df-simpg 19694
This theorem is referenced by:  ablsimpgfind  19713
  Copyright terms: Public domain W3C validator