| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > php2OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of php2 9231 as of 20-Nov-2024. (Contributed by NM, 31-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| php2OLD | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2821 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ ω ↔ 𝐴 ∈ ω)) | |
| 2 | psseq2 4073 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐵 ⊊ 𝑥 ↔ 𝐵 ⊊ 𝐴)) | |
| 3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) ↔ (𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴))) |
| 4 | breq2 5129 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐵 ≺ 𝑥 ↔ 𝐵 ≺ 𝐴)) | |
| 5 | 3, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → 𝐵 ≺ 𝑥) ↔ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴))) |
| 6 | vex 3468 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 7 | pssss 4080 | . . . . . 6 ⊢ (𝐵 ⊊ 𝑥 → 𝐵 ⊆ 𝑥) | |
| 8 | ssdomg 9023 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝐵 ⊆ 𝑥 → 𝐵 ≼ 𝑥)) | |
| 9 | 6, 7, 8 | mpsyl 68 | . . . . 5 ⊢ (𝐵 ⊊ 𝑥 → 𝐵 ≼ 𝑥) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → 𝐵 ≼ 𝑥) |
| 11 | php 9230 | . . . . 5 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → ¬ 𝑥 ≈ 𝐵) | |
| 12 | ensym 9026 | . . . . 5 ⊢ (𝐵 ≈ 𝑥 → 𝑥 ≈ 𝐵) | |
| 13 | 11, 12 | nsyl 140 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → ¬ 𝐵 ≈ 𝑥) |
| 14 | brsdom 8998 | . . . 4 ⊢ (𝐵 ≺ 𝑥 ↔ (𝐵 ≼ 𝑥 ∧ ¬ 𝐵 ≈ 𝑥)) | |
| 15 | 10, 13, 14 | sylanbrc 583 | . . 3 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → 𝐵 ≺ 𝑥) |
| 16 | 5, 15 | vtoclg 3538 | . 2 ⊢ (𝐴 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴)) |
| 17 | 16 | anabsi5 669 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ⊆ wss 3933 ⊊ wpss 3934 class class class wbr 5125 ωcom 7870 ≈ cen 8965 ≼ cdom 8966 ≺ csdm 8967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7871 df-1o 8489 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |