![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgruhgr0v | Structured version Visualization version GIF version |
Description: Any null graph (without vertices) represented as hypergraph is a friendship graph. (Contributed by AV, 29-Mar-2021.) |
Ref | Expression |
---|---|
frgruhgr0v | ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ FriendGraph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgr0vb 29112 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) | |
2 | 1 | biimpcd 249 | . . 3 ⊢ (𝐺 ∈ UHGraph → ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (iEdg‘𝐺) = ∅)) |
3 | 2 | anabsi5 669 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (iEdg‘𝐺) = ∅) |
4 | frgr0vb 30305 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ FriendGraph ) | |
5 | 3, 4 | mpd3an3 1462 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ FriendGraph ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1538 ∈ wcel 2107 ∅c0 4340 ‘cfv 6566 Vtxcvtx 29036 iEdgciedg 29037 UHGraphcuhgr 29096 FriendGraph cfrgr 30300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-i2m1 11227 ax-1ne0 11228 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-po 5598 df-so 5599 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-ov 7438 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-2 12333 df-uhgr 29098 df-upgr 29122 df-uspgr 29190 df-usgr 29191 df-frgr 30301 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |