MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frinsg Structured version   Visualization version   GIF version

Theorem frinsg 9770
Description: Well-Founded Induction Schema. If a property passes from all elements less than 𝑦 of a well-founded class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. Theorem 5.6(ii) of [Levy] p. 64. (Contributed by Scott Fenton, 7-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
frinsg.1 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))
Assertion
Ref Expression
frinsg ((𝑅 Fr 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑧   𝑦,𝑅,𝑧
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem frinsg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4060 . . 3 {𝑦𝐴𝜑} ⊆ 𝐴
2 dfss3 3952 . . . . . . . 8 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)𝑧 ∈ {𝑦𝐴𝜑})
3 nfcv 2899 . . . . . . . . . . 11 𝑦𝐴
43elrabsf 3816 . . . . . . . . . 10 (𝑧 ∈ {𝑦𝐴𝜑} ↔ (𝑧𝐴[𝑧 / 𝑦]𝜑))
54simprbi 496 . . . . . . . . 9 (𝑧 ∈ {𝑦𝐴𝜑} → [𝑧 / 𝑦]𝜑)
65ralimi 3074 . . . . . . . 8 (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)𝑧 ∈ {𝑦𝐴𝜑} → ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑)
72, 6sylbi 217 . . . . . . 7 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑)
8 nfv 1914 . . . . . . . . 9 𝑦 𝑤𝐴
9 nfcv 2899 . . . . . . . . . . 11 𝑦Pred(𝑅, 𝐴, 𝑤)
10 nfsbc1v 3790 . . . . . . . . . . 11 𝑦[𝑧 / 𝑦]𝜑
119, 10nfralw 3295 . . . . . . . . . 10 𝑦𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑
12 nfsbc1v 3790 . . . . . . . . . 10 𝑦[𝑤 / 𝑦]𝜑
1311, 12nfim 1896 . . . . . . . . 9 𝑦(∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑)
148, 13nfim 1896 . . . . . . . 8 𝑦(𝑤𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑))
15 eleq1w 2818 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑦𝐴𝑤𝐴))
16 predeq3 6299 . . . . . . . . . . 11 (𝑦 = 𝑤 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑤))
1716raleqdv 3309 . . . . . . . . . 10 (𝑦 = 𝑤 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑))
18 sbceq1a 3781 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝜑[𝑤 / 𝑦]𝜑))
1917, 18imbi12d 344 . . . . . . . . 9 (𝑦 = 𝑤 → ((∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑) ↔ (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑)))
2015, 19imbi12d 344 . . . . . . . 8 (𝑦 = 𝑤 → ((𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑)) ↔ (𝑤𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑))))
21 frinsg.1 . . . . . . . 8 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))
2214, 20, 21chvarfv 2241 . . . . . . 7 (𝑤𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑))
237, 22syl5 34 . . . . . 6 (𝑤𝐴 → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → [𝑤 / 𝑦]𝜑))
2423anc2li 555 . . . . 5 (𝑤𝐴 → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → (𝑤𝐴[𝑤 / 𝑦]𝜑)))
253elrabsf 3816 . . . . 5 (𝑤 ∈ {𝑦𝐴𝜑} ↔ (𝑤𝐴[𝑤 / 𝑦]𝜑))
2624, 25imbitrrdi 252 . . . 4 (𝑤𝐴 → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → 𝑤 ∈ {𝑦𝐴𝜑}))
2726rgen 3054 . . 3 𝑤𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → 𝑤 ∈ {𝑦𝐴𝜑})
28 frind 9769 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ({𝑦𝐴𝜑} ⊆ 𝐴 ∧ ∀𝑤𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → 𝑤 ∈ {𝑦𝐴𝜑}))) → 𝐴 = {𝑦𝐴𝜑})
291, 27, 28mpanr12 705 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝐴 = {𝑦𝐴𝜑})
30 rabid2 3454 . 2 (𝐴 = {𝑦𝐴𝜑} ↔ ∀𝑦𝐴 𝜑)
3129, 30sylib 218 1 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  {crab 3420  [wsbc 3770  wss 3931   Fr wfr 5608   Se wse 5609  Predcpred 6294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-ttrcl 9727
This theorem is referenced by:  frins  9771  frins2f  9772
  Copyright terms: Public domain W3C validator