MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem3 Structured version   Visualization version   GIF version

Theorem unblem3 9068
Description: Lemma for unbnn 9070. The value of the function 𝐹 is less than its value at a successor. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
Assertion
Ref Expression
unblem3 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ (𝐹‘suc 𝑧)))
Distinct variable groups:   𝑤,𝑣,𝑥,𝑧,𝐴   𝑣,𝐹,𝑤,𝑧
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unblem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 unblem.2 . . . . . . 7 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
21unblem2 9067 . . . . . 6 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ 𝐴))
32imp 407 . . . . 5 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ 𝑧 ∈ ω) → (𝐹𝑧) ∈ 𝐴)
4 omsson 7716 . . . . . . . 8 ω ⊆ On
5 sstr 3929 . . . . . . . 8 ((𝐴 ⊆ ω ∧ ω ⊆ On) → 𝐴 ⊆ On)
64, 5mpan2 688 . . . . . . 7 (𝐴 ⊆ ω → 𝐴 ⊆ On)
7 ssel 3914 . . . . . . . 8 (𝐴 ⊆ On → ((𝐹𝑧) ∈ 𝐴 → (𝐹𝑧) ∈ On))
87anc2li 556 . . . . . . 7 (𝐴 ⊆ On → ((𝐹𝑧) ∈ 𝐴 → (𝐴 ⊆ On ∧ (𝐹𝑧) ∈ On)))
96, 8syl 17 . . . . . 6 (𝐴 ⊆ ω → ((𝐹𝑧) ∈ 𝐴 → (𝐴 ⊆ On ∧ (𝐹𝑧) ∈ On)))
109ad2antrr 723 . . . . 5 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ 𝑧 ∈ ω) → ((𝐹𝑧) ∈ 𝐴 → (𝐴 ⊆ On ∧ (𝐹𝑧) ∈ On)))
113, 10mpd 15 . . . 4 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ 𝑧 ∈ ω) → (𝐴 ⊆ On ∧ (𝐹𝑧) ∈ On))
12 onmindif 6355 . . . 4 ((𝐴 ⊆ On ∧ (𝐹𝑧) ∈ On) → (𝐹𝑧) ∈ (𝐴 ∖ suc (𝐹𝑧)))
1311, 12syl 17 . . 3 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ 𝑧 ∈ ω) → (𝐹𝑧) ∈ (𝐴 ∖ suc (𝐹𝑧)))
14 unblem1 9066 . . . . . . 7 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ (𝐹𝑧) ∈ 𝐴) → (𝐴 ∖ suc (𝐹𝑧)) ∈ 𝐴)
1514ex 413 . . . . . 6 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → ((𝐹𝑧) ∈ 𝐴 (𝐴 ∖ suc (𝐹𝑧)) ∈ 𝐴))
162, 15syld 47 . . . . 5 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐴 ∖ suc (𝐹𝑧)) ∈ 𝐴))
17 suceq 6331 . . . . . . . . 9 (𝑦 = 𝑥 → suc 𝑦 = suc 𝑥)
1817difeq2d 4057 . . . . . . . 8 (𝑦 = 𝑥 → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc 𝑥))
1918inteqd 4884 . . . . . . 7 (𝑦 = 𝑥 (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc 𝑥))
20 suceq 6331 . . . . . . . . 9 (𝑦 = (𝐹𝑧) → suc 𝑦 = suc (𝐹𝑧))
2120difeq2d 4057 . . . . . . . 8 (𝑦 = (𝐹𝑧) → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc (𝐹𝑧)))
2221inteqd 4884 . . . . . . 7 (𝑦 = (𝐹𝑧) → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc (𝐹𝑧)))
231, 19, 22frsucmpt2 8271 . . . . . 6 ((𝑧 ∈ ω ∧ (𝐴 ∖ suc (𝐹𝑧)) ∈ 𝐴) → (𝐹‘suc 𝑧) = (𝐴 ∖ suc (𝐹𝑧)))
2423ex 413 . . . . 5 (𝑧 ∈ ω → ( (𝐴 ∖ suc (𝐹𝑧)) ∈ 𝐴 → (𝐹‘suc 𝑧) = (𝐴 ∖ suc (𝐹𝑧))))
2516, 24sylcom 30 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹‘suc 𝑧) = (𝐴 ∖ suc (𝐹𝑧))))
2625imp 407 . . 3 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ 𝑧 ∈ ω) → (𝐹‘suc 𝑧) = (𝐴 ∖ suc (𝐹𝑧)))
2713, 26eleqtrrd 2842 . 2 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ 𝑧 ∈ ω) → (𝐹𝑧) ∈ (𝐹‘suc 𝑧))
2827ex 413 1 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ (𝐹‘suc 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  wss 3887   cint 4879  cmpt 5157  cres 5591  Oncon0 6266  suc csuc 6268  cfv 6433  ωcom 7712  reccrdg 8240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241
This theorem is referenced by:  unblem4  9069
  Copyright terms: Public domain W3C validator