MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem3 Structured version   Visualization version   GIF version

Theorem unblem3 9293
Description: Lemma for unbnn 9295. The value of the function 𝐹 is less than its value at a successor. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
Assertion
Ref Expression
unblem3 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ (𝐹‘suc 𝑧)))
Distinct variable groups:   𝑤,𝑣,𝑥,𝑧,𝐴   𝑣,𝐹,𝑤,𝑧
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unblem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 unblem.2 . . . . . . 7 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
21unblem2 9292 . . . . . 6 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ 𝐴))
32imp 406 . . . . 5 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ 𝑧 ∈ ω) → (𝐹𝑧) ∈ 𝐴)
4 omsson 7852 . . . . . . . 8 ω ⊆ On
5 sstr 3982 . . . . . . . 8 ((𝐴 ⊆ ω ∧ ω ⊆ On) → 𝐴 ⊆ On)
64, 5mpan2 688 . . . . . . 7 (𝐴 ⊆ ω → 𝐴 ⊆ On)
7 ssel 3967 . . . . . . . 8 (𝐴 ⊆ On → ((𝐹𝑧) ∈ 𝐴 → (𝐹𝑧) ∈ On))
87anc2li 555 . . . . . . 7 (𝐴 ⊆ On → ((𝐹𝑧) ∈ 𝐴 → (𝐴 ⊆ On ∧ (𝐹𝑧) ∈ On)))
96, 8syl 17 . . . . . 6 (𝐴 ⊆ ω → ((𝐹𝑧) ∈ 𝐴 → (𝐴 ⊆ On ∧ (𝐹𝑧) ∈ On)))
109ad2antrr 723 . . . . 5 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ 𝑧 ∈ ω) → ((𝐹𝑧) ∈ 𝐴 → (𝐴 ⊆ On ∧ (𝐹𝑧) ∈ On)))
113, 10mpd 15 . . . 4 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ 𝑧 ∈ ω) → (𝐴 ⊆ On ∧ (𝐹𝑧) ∈ On))
12 onmindif 6446 . . . 4 ((𝐴 ⊆ On ∧ (𝐹𝑧) ∈ On) → (𝐹𝑧) ∈ (𝐴 ∖ suc (𝐹𝑧)))
1311, 12syl 17 . . 3 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ 𝑧 ∈ ω) → (𝐹𝑧) ∈ (𝐴 ∖ suc (𝐹𝑧)))
14 unblem1 9291 . . . . . . 7 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ (𝐹𝑧) ∈ 𝐴) → (𝐴 ∖ suc (𝐹𝑧)) ∈ 𝐴)
1514ex 412 . . . . . 6 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → ((𝐹𝑧) ∈ 𝐴 (𝐴 ∖ suc (𝐹𝑧)) ∈ 𝐴))
162, 15syld 47 . . . . 5 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐴 ∖ suc (𝐹𝑧)) ∈ 𝐴))
17 suceq 6420 . . . . . . . . 9 (𝑦 = 𝑥 → suc 𝑦 = suc 𝑥)
1817difeq2d 4114 . . . . . . . 8 (𝑦 = 𝑥 → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc 𝑥))
1918inteqd 4945 . . . . . . 7 (𝑦 = 𝑥 (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc 𝑥))
20 suceq 6420 . . . . . . . . 9 (𝑦 = (𝐹𝑧) → suc 𝑦 = suc (𝐹𝑧))
2120difeq2d 4114 . . . . . . . 8 (𝑦 = (𝐹𝑧) → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc (𝐹𝑧)))
2221inteqd 4945 . . . . . . 7 (𝑦 = (𝐹𝑧) → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc (𝐹𝑧)))
231, 19, 22frsucmpt2 8435 . . . . . 6 ((𝑧 ∈ ω ∧ (𝐴 ∖ suc (𝐹𝑧)) ∈ 𝐴) → (𝐹‘suc 𝑧) = (𝐴 ∖ suc (𝐹𝑧)))
2423ex 412 . . . . 5 (𝑧 ∈ ω → ( (𝐴 ∖ suc (𝐹𝑧)) ∈ 𝐴 → (𝐹‘suc 𝑧) = (𝐴 ∖ suc (𝐹𝑧))))
2516, 24sylcom 30 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹‘suc 𝑧) = (𝐴 ∖ suc (𝐹𝑧))))
2625imp 406 . . 3 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ 𝑧 ∈ ω) → (𝐹‘suc 𝑧) = (𝐴 ∖ suc (𝐹𝑧)))
2713, 26eleqtrrd 2828 . 2 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ 𝑧 ∈ ω) → (𝐹𝑧) ∈ (𝐹‘suc 𝑧))
2827ex 412 1 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ (𝐹‘suc 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3053  wrex 3062  Vcvv 3466  cdif 3937  wss 3940   cint 4940  cmpt 5221  cres 5668  Oncon0 6354  suc csuc 6356  cfv 6533  ωcom 7848  reccrdg 8404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405
This theorem is referenced by:  unblem4  9294
  Copyright terms: Public domain W3C validator