MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem3 Structured version   Visualization version   GIF version

Theorem unblem3 9293
Description: Lemma for unbnn 9295. The value of the function 𝐹 is less than its value at a successor. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
Assertion
Ref Expression
unblem3 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ (𝐹‘suc 𝑧)))
Distinct variable groups:   𝑤,𝑣,𝑥,𝑧,𝐴   𝑣,𝐹,𝑤,𝑧
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unblem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 unblem.2 . . . . . . 7 𝐹 = (rec((𝑥 ∈ V ↦ (𝐴 ∖ suc 𝑥)), 𝐴) ↾ ω)
21unblem2 9292 . . . . . 6 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ 𝐴))
32imp 407 . . . . 5 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ 𝑧 ∈ ω) → (𝐹𝑧) ∈ 𝐴)
4 omsson 7855 . . . . . . . 8 ω ⊆ On
5 sstr 3989 . . . . . . . 8 ((𝐴 ⊆ ω ∧ ω ⊆ On) → 𝐴 ⊆ On)
64, 5mpan2 689 . . . . . . 7 (𝐴 ⊆ ω → 𝐴 ⊆ On)
7 ssel 3974 . . . . . . . 8 (𝐴 ⊆ On → ((𝐹𝑧) ∈ 𝐴 → (𝐹𝑧) ∈ On))
87anc2li 556 . . . . . . 7 (𝐴 ⊆ On → ((𝐹𝑧) ∈ 𝐴 → (𝐴 ⊆ On ∧ (𝐹𝑧) ∈ On)))
96, 8syl 17 . . . . . 6 (𝐴 ⊆ ω → ((𝐹𝑧) ∈ 𝐴 → (𝐴 ⊆ On ∧ (𝐹𝑧) ∈ On)))
109ad2antrr 724 . . . . 5 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ 𝑧 ∈ ω) → ((𝐹𝑧) ∈ 𝐴 → (𝐴 ⊆ On ∧ (𝐹𝑧) ∈ On)))
113, 10mpd 15 . . . 4 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ 𝑧 ∈ ω) → (𝐴 ⊆ On ∧ (𝐹𝑧) ∈ On))
12 onmindif 6453 . . . 4 ((𝐴 ⊆ On ∧ (𝐹𝑧) ∈ On) → (𝐹𝑧) ∈ (𝐴 ∖ suc (𝐹𝑧)))
1311, 12syl 17 . . 3 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ 𝑧 ∈ ω) → (𝐹𝑧) ∈ (𝐴 ∖ suc (𝐹𝑧)))
14 unblem1 9291 . . . . . . 7 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ (𝐹𝑧) ∈ 𝐴) → (𝐴 ∖ suc (𝐹𝑧)) ∈ 𝐴)
1514ex 413 . . . . . 6 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → ((𝐹𝑧) ∈ 𝐴 (𝐴 ∖ suc (𝐹𝑧)) ∈ 𝐴))
162, 15syld 47 . . . . 5 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐴 ∖ suc (𝐹𝑧)) ∈ 𝐴))
17 suceq 6427 . . . . . . . . 9 (𝑦 = 𝑥 → suc 𝑦 = suc 𝑥)
1817difeq2d 4121 . . . . . . . 8 (𝑦 = 𝑥 → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc 𝑥))
1918inteqd 4954 . . . . . . 7 (𝑦 = 𝑥 (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc 𝑥))
20 suceq 6427 . . . . . . . . 9 (𝑦 = (𝐹𝑧) → suc 𝑦 = suc (𝐹𝑧))
2120difeq2d 4121 . . . . . . . 8 (𝑦 = (𝐹𝑧) → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc (𝐹𝑧)))
2221inteqd 4954 . . . . . . 7 (𝑦 = (𝐹𝑧) → (𝐴 ∖ suc 𝑦) = (𝐴 ∖ suc (𝐹𝑧)))
231, 19, 22frsucmpt2 8436 . . . . . 6 ((𝑧 ∈ ω ∧ (𝐴 ∖ suc (𝐹𝑧)) ∈ 𝐴) → (𝐹‘suc 𝑧) = (𝐴 ∖ suc (𝐹𝑧)))
2423ex 413 . . . . 5 (𝑧 ∈ ω → ( (𝐴 ∖ suc (𝐹𝑧)) ∈ 𝐴 → (𝐹‘suc 𝑧) = (𝐴 ∖ suc (𝐹𝑧))))
2516, 24sylcom 30 . . . 4 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹‘suc 𝑧) = (𝐴 ∖ suc (𝐹𝑧))))
2625imp 407 . . 3 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ 𝑧 ∈ ω) → (𝐹‘suc 𝑧) = (𝐴 ∖ suc (𝐹𝑧)))
2713, 26eleqtrrd 2836 . 2 (((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) ∧ 𝑧 ∈ ω) → (𝐹𝑧) ∈ (𝐹‘suc 𝑧))
2827ex 413 1 ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣𝐴 𝑤𝑣) → (𝑧 ∈ ω → (𝐹𝑧) ∈ (𝐹‘suc 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  Vcvv 3474  cdif 3944  wss 3947   cint 4949  cmpt 5230  cres 5677  Oncon0 6361  suc csuc 6363  cfv 6540  ωcom 7851  reccrdg 8405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406
This theorem is referenced by:  unblem4  9294
  Copyright terms: Public domain W3C validator