| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctild | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
| Ref | Expression |
|---|---|
| jctild.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jctild.2 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jctild | ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctild.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3 | jctild.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anc2li 555 equvini 2457 2reu1 3844 frpoinsg 6298 ordunidif 6364 isofrlem 7283 dfwe2 7716 orduniorsuc 7769 tfisg 7793 poxp 8067 fnse 8072 ssenen 9075 dffi3 9326 fpwwe2lem12 10544 zmulcl 12531 rpneg 12930 rexuz3 15263 cau3lem 15269 climrlim2 15461 o1rlimmul 15533 iseralt 15599 gcdzeq 16470 isprm3 16601 vdwnnlem2 16915 chnccat 18540 ablfaclem3 20009 epttop 22944 lmcnp 23239 dfconn2 23354 txcnp 23555 cmphaushmeo 23735 isfild 23793 cnpflf2 23935 flimfnfcls 23963 alexsubALT 23986 fgcfil 25218 bcthlem5 25275 ivthlem2 25400 ivthlem3 25401 dvfsumrlim 25985 plypf1 26164 noetalem1 27700 noseqinds 28243 axeuclidlem 28961 usgr2wlkneq 29755 wwlksnredwwlkn0 29895 wwlksnextwrd 29896 clwlkclwwlklem2a1 29993 lnon0 30799 hstles 32232 mdsl1i 32322 atcveq0 32349 atcvat4i 32398 cdjreui 32433 issgon 34208 connpconn 35351 outsideofrflx 36243 isbasisrelowllem1 37472 isbasisrelowllem2 37473 poimirlem3 37736 poimirlem29 37762 poimir 37766 heicant 37768 equivtotbnd 37891 ismtybndlem 37919 cvrat4 39615 linepsubN 39924 pmapsub 39940 osumcllem4N 40131 pexmidlem1N 40142 dochexmidlem1 41632 cantnfresb 43481 harval3 43695 clcnvlem 43780 relpfrlem 45110 iccpartimp 47579 sbgoldbwt 47939 sbgoldbst 47940 elsetrecslem 49860 |
| Copyright terms: Public domain | W3C validator |