| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctild | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
| Ref | Expression |
|---|---|
| jctild.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jctild.2 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jctild | ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctild.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3 | jctild.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anc2li 555 equvini 2455 2reu1 3843 frpoinsg 6285 ordunidif 6351 isofrlem 7269 dfwe2 7702 orduniorsuc 7755 tfisg 7779 poxp 8053 fnse 8058 ssenen 9059 dffi3 9310 fpwwe2lem12 10528 zmulcl 12516 rpneg 12919 rexuz3 15251 cau3lem 15257 climrlim2 15449 o1rlimmul 15521 iseralt 15587 gcdzeq 16458 isprm3 16589 vdwnnlem2 16903 chnccat 18527 ablfaclem3 19996 epttop 22919 lmcnp 23214 dfconn2 23329 txcnp 23530 cmphaushmeo 23710 isfild 23768 cnpflf2 23910 flimfnfcls 23938 alexsubALT 23961 fgcfil 25193 bcthlem5 25250 ivthlem2 25375 ivthlem3 25376 dvfsumrlim 25960 plypf1 26139 noetalem1 27675 noseqinds 28218 axeuclidlem 28935 usgr2wlkneq 29729 wwlksnredwwlkn0 29869 wwlksnextwrd 29870 clwlkclwwlklem2a1 29964 lnon0 30770 hstles 32203 mdsl1i 32293 atcveq0 32320 atcvat4i 32369 cdjreui 32404 issgon 34128 connpconn 35271 outsideofrflx 36161 isbasisrelowllem1 37389 isbasisrelowllem2 37390 poimirlem3 37663 poimirlem29 37689 poimir 37693 heicant 37695 equivtotbnd 37818 ismtybndlem 37846 cvrat4 39482 linepsubN 39791 pmapsub 39807 osumcllem4N 39998 pexmidlem1N 40009 dochexmidlem1 41499 cantnfresb 43357 harval3 43571 clcnvlem 43656 relpfrlem 44986 iccpartimp 47448 sbgoldbwt 47808 sbgoldbst 47809 elsetrecslem 49731 |
| Copyright terms: Public domain | W3C validator |