![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctild | Structured version Visualization version GIF version |
Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctild.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jctild.2 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jctild | ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctild.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
3 | jctild.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | jcad 514 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: anc2li 557 equvini 2455 2reu1 3892 frpoinsg 6345 ordunidif 6414 isofrlem 7337 dfwe2 7761 orduniorsuc 7818 tfisg 7843 poxp 8114 fnse 8119 ssenen 9151 dffi3 9426 fpwwe2lem12 10637 zmulcl 12611 rpneg 13006 rexuz3 15295 cau3lem 15301 climrlim2 15491 o1rlimmul 15563 iseralt 15631 gcdzeq 16494 isprm3 16620 vdwnnlem2 16929 ablfaclem3 19957 epttop 22512 lmcnp 22808 dfconn2 22923 txcnp 23124 cmphaushmeo 23304 isfild 23362 cnpflf2 23504 flimfnfcls 23532 alexsubALT 23555 fgcfil 24788 bcthlem5 24845 ivthlem2 24969 ivthlem3 24970 dvfsumrlim 25548 plypf1 25726 noetalem1 27244 n0sind 27706 axeuclidlem 28251 usgr2wlkneq 29044 wwlksnredwwlkn0 29181 wwlksnextwrd 29182 clwlkclwwlklem2a1 29276 lnon0 30082 hstles 31515 mdsl1i 31605 atcveq0 31632 atcvat4i 31681 cdjreui 31716 issgon 33152 connpconn 34257 outsideofrflx 35130 isbasisrelowllem1 36284 isbasisrelowllem2 36285 poimirlem3 36539 poimirlem29 36565 poimir 36569 heicant 36571 equivtotbnd 36694 ismtybndlem 36722 cvrat4 38362 linepsubN 38671 pmapsub 38687 osumcllem4N 38878 pexmidlem1N 38889 dochexmidlem1 40379 cantnfresb 42122 harval3 42337 clcnvlem 42422 iccpartimp 46133 sbgoldbwt 46493 sbgoldbst 46494 elsetrecslem 47792 |
Copyright terms: Public domain | W3C validator |