| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctild | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
| Ref | Expression |
|---|---|
| jctild.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jctild.2 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jctild | ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctild.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3 | jctild.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anc2li 555 equvini 2458 2reu1 3877 frpoinsg 6343 ordunidif 6413 isofrlem 7342 dfwe2 7776 orduniorsuc 7832 tfisg 7857 poxp 8135 fnse 8140 ssenen 9173 dffi3 9453 fpwwe2lem12 10664 zmulcl 12649 rpneg 13049 rexuz3 15369 cau3lem 15375 climrlim2 15565 o1rlimmul 15637 iseralt 15703 gcdzeq 16571 isprm3 16702 vdwnnlem2 17016 ablfaclem3 20075 epttop 22963 lmcnp 23258 dfconn2 23373 txcnp 23574 cmphaushmeo 23754 isfild 23812 cnpflf2 23954 flimfnfcls 23982 alexsubALT 24005 fgcfil 25241 bcthlem5 25298 ivthlem2 25423 ivthlem3 25424 dvfsumrlim 26008 plypf1 26187 noetalem1 27722 noseqinds 28235 axeuclidlem 28907 usgr2wlkneq 29704 wwlksnredwwlkn0 29844 wwlksnextwrd 29845 clwlkclwwlklem2a1 29939 lnon0 30745 hstles 32178 mdsl1i 32268 atcveq0 32295 atcvat4i 32344 cdjreui 32379 issgon 34083 connpconn 35199 outsideofrflx 36087 isbasisrelowllem1 37315 isbasisrelowllem2 37316 poimirlem3 37589 poimirlem29 37615 poimir 37619 heicant 37621 equivtotbnd 37744 ismtybndlem 37772 cvrat4 39404 linepsubN 39713 pmapsub 39729 osumcllem4N 39920 pexmidlem1N 39931 dochexmidlem1 41421 cantnfresb 43299 harval3 43513 clcnvlem 43598 relpfrlem 44931 iccpartimp 47362 sbgoldbwt 47722 sbgoldbst 47723 elsetrecslem 49226 |
| Copyright terms: Public domain | W3C validator |