![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctild | Structured version Visualization version GIF version |
Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctild.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jctild.2 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jctild | ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctild.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
3 | jctild.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | jcad 514 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: anc2li 557 equvini 2455 2reu1 3891 frpoinsg 6342 ordunidif 6411 isofrlem 7334 dfwe2 7758 orduniorsuc 7815 tfisg 7840 poxp 8111 fnse 8116 ssenen 9148 dffi3 9423 fpwwe2lem12 10634 zmulcl 12608 rpneg 13003 rexuz3 15292 cau3lem 15298 climrlim2 15488 o1rlimmul 15560 iseralt 15628 gcdzeq 16491 isprm3 16617 vdwnnlem2 16926 ablfaclem3 19952 epttop 22504 lmcnp 22800 dfconn2 22915 txcnp 23116 cmphaushmeo 23296 isfild 23354 cnpflf2 23496 flimfnfcls 23524 alexsubALT 23547 fgcfil 24780 bcthlem5 24837 ivthlem2 24961 ivthlem3 24962 dvfsumrlim 25540 plypf1 25718 noetalem1 27234 axeuclidlem 28210 usgr2wlkneq 29003 wwlksnredwwlkn0 29140 wwlksnextwrd 29141 clwlkclwwlklem2a1 29235 lnon0 30039 hstles 31472 mdsl1i 31562 atcveq0 31589 atcvat4i 31638 cdjreui 31673 issgon 33110 connpconn 34215 outsideofrflx 35088 isbasisrelowllem1 36225 isbasisrelowllem2 36226 poimirlem3 36480 poimirlem29 36506 poimir 36510 heicant 36512 equivtotbnd 36635 ismtybndlem 36663 cvrat4 38303 linepsubN 38612 pmapsub 38628 osumcllem4N 38819 pexmidlem1N 38830 dochexmidlem1 40320 cantnfresb 42060 harval3 42275 clcnvlem 42360 iccpartimp 46072 sbgoldbwt 46432 sbgoldbst 46433 elsetrecslem 47698 |
Copyright terms: Public domain | W3C validator |