| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctild | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
| Ref | Expression |
|---|---|
| jctild.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jctild.2 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jctild | ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctild.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3 | jctild.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anc2li 555 equvini 2453 2reu1 3860 frpoinsg 6316 ordunidif 6382 isofrlem 7315 dfwe2 7750 orduniorsuc 7805 tfisg 7830 poxp 8107 fnse 8112 ssenen 9115 dffi3 9382 fpwwe2lem12 10595 zmulcl 12582 rpneg 12985 rexuz3 15315 cau3lem 15321 climrlim2 15513 o1rlimmul 15585 iseralt 15651 gcdzeq 16522 isprm3 16653 vdwnnlem2 16967 ablfaclem3 20019 epttop 22896 lmcnp 23191 dfconn2 23306 txcnp 23507 cmphaushmeo 23687 isfild 23745 cnpflf2 23887 flimfnfcls 23915 alexsubALT 23938 fgcfil 25171 bcthlem5 25228 ivthlem2 25353 ivthlem3 25354 dvfsumrlim 25938 plypf1 26117 noetalem1 27653 noseqinds 28187 axeuclidlem 28889 usgr2wlkneq 29686 wwlksnredwwlkn0 29826 wwlksnextwrd 29827 clwlkclwwlklem2a1 29921 lnon0 30727 hstles 32160 mdsl1i 32250 atcveq0 32277 atcvat4i 32326 cdjreui 32361 issgon 34113 connpconn 35222 outsideofrflx 36115 isbasisrelowllem1 37343 isbasisrelowllem2 37344 poimirlem3 37617 poimirlem29 37643 poimir 37647 heicant 37649 equivtotbnd 37772 ismtybndlem 37800 cvrat4 39437 linepsubN 39746 pmapsub 39762 osumcllem4N 39953 pexmidlem1N 39964 dochexmidlem1 41454 cantnfresb 43313 harval3 43527 clcnvlem 43612 relpfrlem 44943 iccpartimp 47418 sbgoldbwt 47778 sbgoldbst 47779 elsetrecslem 49688 |
| Copyright terms: Public domain | W3C validator |