Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jctild | Structured version Visualization version GIF version |
Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctild.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jctild.2 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jctild | ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctild.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
3 | jctild.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: anc2li 555 equvini 2456 2reu1 3834 frpoinsg 6243 ordunidif 6311 isofrlem 7204 dfwe2 7615 orduniorsuc 7665 poxp 7953 fnse 7958 ssenen 8903 dffi3 9151 frminOLD 9491 fpwwe2lem12 10382 zmulcl 12352 rpneg 12744 rexuz3 15041 cau3lem 15047 climrlim2 15237 o1rlimmul 15309 iseralt 15377 gcdzeq 16243 isprm3 16369 vdwnnlem2 16678 ablfaclem3 19671 epttop 22140 lmcnp 22436 dfconn2 22551 txcnp 22752 cmphaushmeo 22932 isfild 22990 cnpflf2 23132 flimfnfcls 23160 alexsubALT 23183 fgcfil 24416 bcthlem5 24473 ivthlem2 24597 ivthlem3 24598 dvfsumrlim 25176 plypf1 25354 axeuclidlem 27311 usgr2wlkneq 28103 wwlksnredwwlkn0 28240 wwlksnextwrd 28241 clwlkclwwlklem2a1 28335 lnon0 29139 hstles 30572 mdsl1i 30662 atcveq0 30689 atcvat4i 30738 cdjreui 30773 issgon 32070 connpconn 33176 tfisg 33765 noetalem1 33923 outsideofrflx 34408 isbasisrelowllem1 35505 isbasisrelowllem2 35506 poimirlem3 35759 poimirlem29 35785 poimir 35789 heicant 35791 equivtotbnd 35915 ismtybndlem 35943 cvrat4 37436 linepsubN 37745 pmapsub 37761 osumcllem4N 37952 pexmidlem1N 37963 dochexmidlem1 39453 harval3 41105 clcnvlem 41184 iccpartimp 44821 sbgoldbwt 45181 sbgoldbst 45182 elsetrecslem 46356 |
Copyright terms: Public domain | W3C validator |