| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctild | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
| Ref | Expression |
|---|---|
| jctild.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jctild.2 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jctild | ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctild.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3 | jctild.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anc2li 555 equvini 2454 2reu1 3863 frpoinsg 6319 ordunidif 6385 isofrlem 7318 dfwe2 7753 orduniorsuc 7808 tfisg 7833 poxp 8110 fnse 8115 ssenen 9121 dffi3 9389 fpwwe2lem12 10602 zmulcl 12589 rpneg 12992 rexuz3 15322 cau3lem 15328 climrlim2 15520 o1rlimmul 15592 iseralt 15658 gcdzeq 16529 isprm3 16660 vdwnnlem2 16974 ablfaclem3 20026 epttop 22903 lmcnp 23198 dfconn2 23313 txcnp 23514 cmphaushmeo 23694 isfild 23752 cnpflf2 23894 flimfnfcls 23922 alexsubALT 23945 fgcfil 25178 bcthlem5 25235 ivthlem2 25360 ivthlem3 25361 dvfsumrlim 25945 plypf1 26124 noetalem1 27660 noseqinds 28194 axeuclidlem 28896 usgr2wlkneq 29693 wwlksnredwwlkn0 29833 wwlksnextwrd 29834 clwlkclwwlklem2a1 29928 lnon0 30734 hstles 32167 mdsl1i 32257 atcveq0 32284 atcvat4i 32333 cdjreui 32368 issgon 34120 connpconn 35229 outsideofrflx 36122 isbasisrelowllem1 37350 isbasisrelowllem2 37351 poimirlem3 37624 poimirlem29 37650 poimir 37654 heicant 37656 equivtotbnd 37779 ismtybndlem 37807 cvrat4 39444 linepsubN 39753 pmapsub 39769 osumcllem4N 39960 pexmidlem1N 39971 dochexmidlem1 41461 cantnfresb 43320 harval3 43534 clcnvlem 43619 relpfrlem 44950 iccpartimp 47422 sbgoldbwt 47782 sbgoldbst 47783 elsetrecslem 49692 |
| Copyright terms: Public domain | W3C validator |