| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctild | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
| Ref | Expression |
|---|---|
| jctild.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jctild.2 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jctild | ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctild.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3 | jctild.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anc2li 555 equvini 2459 2reu1 3872 frpoinsg 6332 ordunidif 6402 isofrlem 7332 dfwe2 7766 orduniorsuc 7822 tfisg 7847 poxp 8125 fnse 8130 ssenen 9163 dffi3 9441 fpwwe2lem12 10654 zmulcl 12639 rpneg 13039 rexuz3 15365 cau3lem 15371 climrlim2 15561 o1rlimmul 15633 iseralt 15699 gcdzeq 16569 isprm3 16700 vdwnnlem2 17014 ablfaclem3 20068 epttop 22945 lmcnp 23240 dfconn2 23355 txcnp 23556 cmphaushmeo 23736 isfild 23794 cnpflf2 23936 flimfnfcls 23964 alexsubALT 23987 fgcfil 25221 bcthlem5 25278 ivthlem2 25403 ivthlem3 25404 dvfsumrlim 25988 plypf1 26167 noetalem1 27703 noseqinds 28216 axeuclidlem 28887 usgr2wlkneq 29684 wwlksnredwwlkn0 29824 wwlksnextwrd 29825 clwlkclwwlklem2a1 29919 lnon0 30725 hstles 32158 mdsl1i 32248 atcveq0 32275 atcvat4i 32324 cdjreui 32359 issgon 34100 connpconn 35203 outsideofrflx 36091 isbasisrelowllem1 37319 isbasisrelowllem2 37320 poimirlem3 37593 poimirlem29 37619 poimir 37623 heicant 37625 equivtotbnd 37748 ismtybndlem 37776 cvrat4 39408 linepsubN 39717 pmapsub 39733 osumcllem4N 39924 pexmidlem1N 39935 dochexmidlem1 41425 cantnfresb 43295 harval3 43509 clcnvlem 43594 relpfrlem 44926 iccpartimp 47379 sbgoldbwt 47739 sbgoldbst 47740 elsetrecslem 49511 |
| Copyright terms: Public domain | W3C validator |