Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jctild | Structured version Visualization version GIF version |
Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctild.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jctild.2 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jctild | ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctild.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
3 | jctild.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | jcad 516 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: anc2li 559 equvini 2467 2reu1 3806 ordunidif 6223 isofrlem 7094 dfwe2 7502 orduniorsuc 7551 poxp 7834 fnse 7839 ssenen 8727 dffi3 8942 fpwwe2lem12 10116 zmulcl 12084 rpneg 12476 rexuz3 14770 cau3lem 14776 climrlim2 14966 o1rlimmul 15037 iseralt 15103 gcdzeq 15968 isprm3 16094 vdwnnlem2 16402 ablfaclem3 19292 epttop 21724 lmcnp 22019 dfconn2 22134 txcnp 22335 cmphaushmeo 22515 isfild 22573 cnpflf2 22715 flimfnfcls 22743 alexsubALT 22766 fgcfil 23986 bcthlem5 24043 ivthlem2 24167 ivthlem3 24168 dvfsumrlim 24745 plypf1 24923 axeuclidlem 26870 usgr2wlkneq 27659 wwlksnredwwlkn0 27796 wwlksnextwrd 27797 clwlkclwwlklem2a1 27891 lnon0 28695 hstles 30128 mdsl1i 30218 atcveq0 30245 atcvat4i 30294 cdjreui 30329 issgon 31624 connpconn 32727 tfisg 33316 frpoinsg 33342 frmin 33348 noetalem1 33543 outsideofrflx 34014 isbasisrelowllem1 35088 isbasisrelowllem2 35089 poimirlem3 35376 poimirlem29 35402 poimir 35406 heicant 35408 equivtotbnd 35532 ismtybndlem 35560 cvrat4 37055 linepsubN 37364 pmapsub 37380 osumcllem4N 37571 pexmidlem1N 37582 dochexmidlem1 39072 harval3 40663 clcnvlem 40742 iccpartimp 44362 sbgoldbwt 44722 sbgoldbst 44723 elsetrecslem 45726 |
Copyright terms: Public domain | W3C validator |