![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctild | Structured version Visualization version GIF version |
Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctild.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jctild.2 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jctild | ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctild.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
3 | jctild.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anc2li 555 equvini 2463 2reu1 3919 frpoinsg 6375 ordunidif 6444 isofrlem 7376 dfwe2 7809 orduniorsuc 7866 tfisg 7891 poxp 8169 fnse 8174 ssenen 9217 dffi3 9500 fpwwe2lem12 10711 zmulcl 12692 rpneg 13089 rexuz3 15397 cau3lem 15403 climrlim2 15593 o1rlimmul 15665 iseralt 15733 gcdzeq 16599 isprm3 16730 vdwnnlem2 17043 ablfaclem3 20131 epttop 23037 lmcnp 23333 dfconn2 23448 txcnp 23649 cmphaushmeo 23829 isfild 23887 cnpflf2 24029 flimfnfcls 24057 alexsubALT 24080 fgcfil 25324 bcthlem5 25381 ivthlem2 25506 ivthlem3 25507 dvfsumrlim 26092 plypf1 26271 noetalem1 27804 noseqinds 28317 axeuclidlem 28995 usgr2wlkneq 29792 wwlksnredwwlkn0 29929 wwlksnextwrd 29930 clwlkclwwlklem2a1 30024 lnon0 30830 hstles 32263 mdsl1i 32353 atcveq0 32380 atcvat4i 32429 cdjreui 32464 issgon 34087 connpconn 35203 outsideofrflx 36091 isbasisrelowllem1 37321 isbasisrelowllem2 37322 poimirlem3 37583 poimirlem29 37609 poimir 37613 heicant 37615 equivtotbnd 37738 ismtybndlem 37766 cvrat4 39400 linepsubN 39709 pmapsub 39725 osumcllem4N 39916 pexmidlem1N 39927 dochexmidlem1 41417 cantnfresb 43286 harval3 43500 clcnvlem 43585 iccpartimp 47291 sbgoldbwt 47651 sbgoldbst 47652 elsetrecslem 48791 |
Copyright terms: Public domain | W3C validator |