| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctild | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
| Ref | Expression |
|---|---|
| jctild.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jctild.2 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jctild | ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctild.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3 | jctild.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anc2li 555 equvini 2453 2reu1 3857 frpoinsg 6304 ordunidif 6370 isofrlem 7297 dfwe2 7730 orduniorsuc 7785 tfisg 7810 poxp 8084 fnse 8089 ssenen 9092 dffi3 9358 fpwwe2lem12 10571 zmulcl 12558 rpneg 12961 rexuz3 15291 cau3lem 15297 climrlim2 15489 o1rlimmul 15561 iseralt 15627 gcdzeq 16498 isprm3 16629 vdwnnlem2 16943 ablfaclem3 19995 epttop 22872 lmcnp 23167 dfconn2 23282 txcnp 23483 cmphaushmeo 23663 isfild 23721 cnpflf2 23863 flimfnfcls 23891 alexsubALT 23914 fgcfil 25147 bcthlem5 25204 ivthlem2 25329 ivthlem3 25330 dvfsumrlim 25914 plypf1 26093 noetalem1 27629 noseqinds 28163 axeuclidlem 28865 usgr2wlkneq 29659 wwlksnredwwlkn0 29799 wwlksnextwrd 29800 clwlkclwwlklem2a1 29894 lnon0 30700 hstles 32133 mdsl1i 32223 atcveq0 32250 atcvat4i 32299 cdjreui 32334 issgon 34086 connpconn 35195 outsideofrflx 36088 isbasisrelowllem1 37316 isbasisrelowllem2 37317 poimirlem3 37590 poimirlem29 37616 poimir 37620 heicant 37622 equivtotbnd 37745 ismtybndlem 37773 cvrat4 39410 linepsubN 39719 pmapsub 39735 osumcllem4N 39926 pexmidlem1N 39937 dochexmidlem1 41427 cantnfresb 43286 harval3 43500 clcnvlem 43585 relpfrlem 44916 iccpartimp 47391 sbgoldbwt 47751 sbgoldbst 47752 elsetrecslem 49661 |
| Copyright terms: Public domain | W3C validator |