![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctild | Structured version Visualization version GIF version |
Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctild.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jctild.2 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jctild | ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctild.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
3 | jctild.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anc2li 555 equvini 2457 2reu1 3905 frpoinsg 6365 ordunidif 6434 isofrlem 7359 dfwe2 7792 orduniorsuc 7849 tfisg 7874 poxp 8151 fnse 8156 ssenen 9189 dffi3 9468 fpwwe2lem12 10679 zmulcl 12663 rpneg 13064 rexuz3 15383 cau3lem 15389 climrlim2 15579 o1rlimmul 15651 iseralt 15717 gcdzeq 16585 isprm3 16716 vdwnnlem2 17029 ablfaclem3 20121 epttop 23031 lmcnp 23327 dfconn2 23442 txcnp 23643 cmphaushmeo 23823 isfild 23881 cnpflf2 24023 flimfnfcls 24051 alexsubALT 24074 fgcfil 25318 bcthlem5 25375 ivthlem2 25500 ivthlem3 25501 dvfsumrlim 26086 plypf1 26265 noetalem1 27800 noseqinds 28313 axeuclidlem 28991 usgr2wlkneq 29788 wwlksnredwwlkn0 29925 wwlksnextwrd 29926 clwlkclwwlklem2a1 30020 lnon0 30826 hstles 32259 mdsl1i 32349 atcveq0 32376 atcvat4i 32425 cdjreui 32460 issgon 34103 connpconn 35219 outsideofrflx 36108 isbasisrelowllem1 37337 isbasisrelowllem2 37338 poimirlem3 37609 poimirlem29 37635 poimir 37639 heicant 37641 equivtotbnd 37764 ismtybndlem 37792 cvrat4 39425 linepsubN 39734 pmapsub 39750 osumcllem4N 39941 pexmidlem1N 39952 dochexmidlem1 41442 cantnfresb 43313 harval3 43527 clcnvlem 43612 iccpartimp 47341 sbgoldbwt 47701 sbgoldbst 47702 elsetrecslem 48929 |
Copyright terms: Public domain | W3C validator |