| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctild | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
| Ref | Expression |
|---|---|
| jctild.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jctild.2 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jctild | ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctild.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3 | jctild.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anc2li 555 equvini 2453 2reu1 3851 frpoinsg 6295 ordunidif 6361 isofrlem 7281 dfwe2 7714 orduniorsuc 7769 tfisg 7794 poxp 8068 fnse 8073 ssenen 9075 dffi3 9340 fpwwe2lem12 10555 zmulcl 12542 rpneg 12945 rexuz3 15274 cau3lem 15280 climrlim2 15472 o1rlimmul 15544 iseralt 15610 gcdzeq 16481 isprm3 16612 vdwnnlem2 16926 ablfaclem3 19986 epttop 22912 lmcnp 23207 dfconn2 23322 txcnp 23523 cmphaushmeo 23703 isfild 23761 cnpflf2 23903 flimfnfcls 23931 alexsubALT 23954 fgcfil 25187 bcthlem5 25244 ivthlem2 25369 ivthlem3 25370 dvfsumrlim 25954 plypf1 26133 noetalem1 27669 noseqinds 28210 axeuclidlem 28925 usgr2wlkneq 29719 wwlksnredwwlkn0 29859 wwlksnextwrd 29860 clwlkclwwlklem2a1 29954 lnon0 30760 hstles 32193 mdsl1i 32283 atcveq0 32310 atcvat4i 32359 cdjreui 32394 issgon 34092 connpconn 35210 outsideofrflx 36103 isbasisrelowllem1 37331 isbasisrelowllem2 37332 poimirlem3 37605 poimirlem29 37631 poimir 37635 heicant 37637 equivtotbnd 37760 ismtybndlem 37788 cvrat4 39425 linepsubN 39734 pmapsub 39750 osumcllem4N 39941 pexmidlem1N 39952 dochexmidlem1 41442 cantnfresb 43300 harval3 43514 clcnvlem 43599 relpfrlem 44930 iccpartimp 47405 sbgoldbwt 47765 sbgoldbst 47766 elsetrecslem 49688 |
| Copyright terms: Public domain | W3C validator |