Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jctild | Structured version Visualization version GIF version |
Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctild.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jctild.2 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jctild | ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctild.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
3 | jctild.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | jcad 514 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: anc2li 557 equvini 2453 2reu1 3835 frpoinsg 6261 ordunidif 6329 isofrlem 7243 dfwe2 7656 orduniorsuc 7709 poxp 8000 fnse 8005 ssenen 8976 dffi3 9234 fpwwe2lem12 10444 zmulcl 12415 rpneg 12808 rexuz3 15105 cau3lem 15111 climrlim2 15301 o1rlimmul 15373 iseralt 15441 gcdzeq 16307 isprm3 16433 vdwnnlem2 16742 ablfaclem3 19735 epttop 22204 lmcnp 22500 dfconn2 22615 txcnp 22816 cmphaushmeo 22996 isfild 23054 cnpflf2 23196 flimfnfcls 23224 alexsubALT 23247 fgcfil 24480 bcthlem5 24537 ivthlem2 24661 ivthlem3 24662 dvfsumrlim 25240 plypf1 25418 axeuclidlem 27375 usgr2wlkneq 28169 wwlksnredwwlkn0 28306 wwlksnextwrd 28307 clwlkclwwlklem2a1 28401 lnon0 29205 hstles 30638 mdsl1i 30728 atcveq0 30755 atcvat4i 30804 cdjreui 30839 issgon 32136 connpconn 33242 tfisg 33831 noetalem1 33989 outsideofrflx 34474 isbasisrelowllem1 35570 isbasisrelowllem2 35571 poimirlem3 35824 poimirlem29 35850 poimir 35854 heicant 35856 equivtotbnd 35980 ismtybndlem 36008 cvrat4 37499 linepsubN 37808 pmapsub 37824 osumcllem4N 38015 pexmidlem1N 38026 dochexmidlem1 39516 harval3 41183 clcnvlem 41269 iccpartimp 44927 sbgoldbwt 45287 sbgoldbst 45288 elsetrecslem 46462 |
Copyright terms: Public domain | W3C validator |