Step | Hyp | Ref
| Expression |
1 | | ssrab2 4009 |
. . 3
⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
2 | | dfss3 3905 |
. . . . . . . 8
⊢
(Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)𝑧 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}) |
3 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦𝐴 |
4 | 3 | elrabsf 3759 |
. . . . . . . . . 10
⊢ (𝑧 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑦]𝜑)) |
5 | 4 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → [𝑧 / 𝑦]𝜑) |
6 | 5 | ralimi 3086 |
. . . . . . . 8
⊢
(∀𝑧 ∈
Pred (𝑅, 𝐴, 𝑤)𝑧 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} → ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑) |
7 | 2, 6 | sylbi 216 |
. . . . . . 7
⊢
(Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑) |
8 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑤 ∈ 𝐴 |
9 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦Pred(𝑅, 𝐴, 𝑤) |
10 | | nfsbc1v 3731 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦[𝑧 / 𝑦]𝜑 |
11 | 9, 10 | nfralw 3149 |
. . . . . . . . . 10
⊢
Ⅎ𝑦∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑 |
12 | | nfsbc1v 3731 |
. . . . . . . . . 10
⊢
Ⅎ𝑦[𝑤 / 𝑦]𝜑 |
13 | 11, 12 | nfim 1900 |
. . . . . . . . 9
⊢
Ⅎ𝑦(∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑 → [𝑤 / 𝑦]𝜑) |
14 | 8, 13 | nfim 1900 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝑤 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑 → [𝑤 / 𝑦]𝜑)) |
15 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝑦 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) |
16 | | predeq3 6195 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑤)) |
17 | 16 | raleqdv 3339 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑)) |
18 | | sbceq1a 3722 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑦]𝜑)) |
19 | 17, 18 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → ((∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑) ↔ (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑 → [𝑤 / 𝑦]𝜑))) |
20 | 15, 19 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → ((𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) ↔ (𝑤 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑 → [𝑤 / 𝑦]𝜑)))) |
21 | | wfisgOLD.1 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) |
22 | 14, 20, 21 | chvarfv 2236 |
. . . . . . 7
⊢ (𝑤 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑 → [𝑤 / 𝑦]𝜑)) |
23 | 7, 22 | syl5 34 |
. . . . . 6
⊢ (𝑤 ∈ 𝐴 → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → [𝑤 / 𝑦]𝜑)) |
24 | 23 | anc2li 555 |
. . . . 5
⊢ (𝑤 ∈ 𝐴 → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑦]𝜑))) |
25 | 3 | elrabsf 3759 |
. . . . 5
⊢ (𝑤 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑦]𝜑)) |
26 | 24, 25 | syl6ibr 251 |
. . . 4
⊢ (𝑤 ∈ 𝐴 → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝑤 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑})) |
27 | 26 | rgen 3073 |
. . 3
⊢
∀𝑤 ∈
𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝑤 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}) |
28 | | wfi 6238 |
. . 3
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ ({𝑦 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦 ∈ 𝐴 ∣ 𝜑} → 𝑤 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}))) → 𝐴 = {𝑦 ∈ 𝐴 ∣ 𝜑}) |
29 | 1, 27, 28 | mpanr12 701 |
. 2
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐴 = {𝑦 ∈ 𝐴 ∣ 𝜑}) |
30 | | rabid2 3307 |
. 2
⊢ (𝐴 = {𝑦 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑦 ∈ 𝐴 𝜑) |
31 | 29, 30 | sylib 217 |
1
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |