MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfisgOLD Structured version   Visualization version   GIF version

Theorem wfisgOLD 6386
Description: Obsolete version of wfisg 6385 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 11-Feb-2011.)
Hypothesis
Ref Expression
wfisgOLD.1 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))
Assertion
Ref Expression
wfisgOLD ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑧   𝑦,𝑅,𝑧
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem wfisgOLD
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4103 . . 3 {𝑦𝐴𝜑} ⊆ 𝐴
2 dfss3 3997 . . . . . . . 8 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)𝑧 ∈ {𝑦𝐴𝜑})
3 nfcv 2908 . . . . . . . . . . 11 𝑦𝐴
43elrabsf 3853 . . . . . . . . . 10 (𝑧 ∈ {𝑦𝐴𝜑} ↔ (𝑧𝐴[𝑧 / 𝑦]𝜑))
54simprbi 496 . . . . . . . . 9 (𝑧 ∈ {𝑦𝐴𝜑} → [𝑧 / 𝑦]𝜑)
65ralimi 3089 . . . . . . . 8 (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)𝑧 ∈ {𝑦𝐴𝜑} → ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑)
72, 6sylbi 217 . . . . . . 7 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑)
8 nfv 1913 . . . . . . . . 9 𝑦 𝑤𝐴
9 nfcv 2908 . . . . . . . . . . 11 𝑦Pred(𝑅, 𝐴, 𝑤)
10 nfsbc1v 3824 . . . . . . . . . . 11 𝑦[𝑧 / 𝑦]𝜑
119, 10nfralw 3317 . . . . . . . . . 10 𝑦𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑
12 nfsbc1v 3824 . . . . . . . . . 10 𝑦[𝑤 / 𝑦]𝜑
1311, 12nfim 1895 . . . . . . . . 9 𝑦(∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑)
148, 13nfim 1895 . . . . . . . 8 𝑦(𝑤𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑))
15 eleq1w 2827 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑦𝐴𝑤𝐴))
16 predeq3 6336 . . . . . . . . . . 11 (𝑦 = 𝑤 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑤))
1716raleqdv 3334 . . . . . . . . . 10 (𝑦 = 𝑤 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑))
18 sbceq1a 3815 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝜑[𝑤 / 𝑦]𝜑))
1917, 18imbi12d 344 . . . . . . . . 9 (𝑦 = 𝑤 → ((∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑) ↔ (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑)))
2015, 19imbi12d 344 . . . . . . . 8 (𝑦 = 𝑤 → ((𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑)) ↔ (𝑤𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑))))
21 wfisgOLD.1 . . . . . . . 8 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))
2214, 20, 21chvarfv 2241 . . . . . . 7 (𝑤𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑))
237, 22syl5 34 . . . . . 6 (𝑤𝐴 → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → [𝑤 / 𝑦]𝜑))
2423anc2li 555 . . . . 5 (𝑤𝐴 → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → (𝑤𝐴[𝑤 / 𝑦]𝜑)))
253elrabsf 3853 . . . . 5 (𝑤 ∈ {𝑦𝐴𝜑} ↔ (𝑤𝐴[𝑤 / 𝑦]𝜑))
2624, 25imbitrrdi 252 . . . 4 (𝑤𝐴 → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → 𝑤 ∈ {𝑦𝐴𝜑}))
2726rgen 3069 . . 3 𝑤𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → 𝑤 ∈ {𝑦𝐴𝜑})
28 wfi 6382 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ ({𝑦𝐴𝜑} ⊆ 𝐴 ∧ ∀𝑤𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → 𝑤 ∈ {𝑦𝐴𝜑}))) → 𝐴 = {𝑦𝐴𝜑})
291, 27, 28mpanr12 704 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐴 = {𝑦𝐴𝜑})
30 rabid2 3478 . 2 (𝐴 = {𝑦𝐴𝜑} ↔ ∀𝑦𝐴 𝜑)
3129, 30sylib 218 1 ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  [wsbc 3804  wss 3976   Se wse 5650   We wwe 5651  Predcpred 6331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator