Step | Hyp | Ref
| Expression |
1 | | ssrab2 4009 |
. . . . 5
⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On |
2 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑥𝑧 |
3 | | nfrab1 3310 |
. . . . . . . . 9
⊢
Ⅎ𝑥{𝑥 ∈ On ∣ 𝜑} |
4 | 2, 3 | nfss 3909 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} |
5 | 3 | nfcri 2893 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑} |
6 | 4, 5 | nfim 1900 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}) |
7 | | dfss3 3905 |
. . . . . . . . 9
⊢ (𝑥 ⊆ {𝑥 ∈ On ∣ 𝜑} ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑}) |
8 | | sseq1 3942 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 ⊆ {𝑥 ∈ On ∣ 𝜑} ↔ 𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑})) |
9 | 7, 8 | bitr3id 284 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ 𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑})) |
10 | | rabid 3304 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑥 ∈ On ∧ 𝜑)) |
11 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})) |
12 | 10, 11 | bitr3id 284 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ On ∧ 𝜑) ↔ 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})) |
13 | 9, 12 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((∀𝑦 ∈ 𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → (𝑥 ∈ On ∧ 𝜑)) ↔ (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}))) |
14 | | sbequ 2087 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
15 | | nfcv 2906 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥On |
16 | | nfcv 2906 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑤On |
17 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑤𝜑 |
18 | | nfs1v 2155 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥[𝑤 / 𝑥]𝜑 |
19 | | sbequ12 2247 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑)) |
20 | 15, 16, 17, 18, 19 | cbvrabw 3414 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ On ∣ 𝜑} = {𝑤 ∈ On ∣ [𝑤 / 𝑥]𝜑} |
21 | 14, 20 | elrab2 3620 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑦 ∈ On ∧ [𝑦 / 𝑥]𝜑)) |
22 | 21 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → [𝑦 / 𝑥]𝜑) |
23 | 22 | ralimi 3086 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → ∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑) |
24 | | tfis.1 |
. . . . . . . . 9
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑)) |
25 | 23, 24 | syl5 34 |
. . . . . . . 8
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → 𝜑)) |
26 | 25 | anc2li 555 |
. . . . . . 7
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → (𝑥 ∈ On ∧ 𝜑))) |
27 | 2, 6, 13, 26 | vtoclgaf 3502 |
. . . . . 6
⊢ (𝑧 ∈ On → (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})) |
28 | 27 | rgen 3073 |
. . . . 5
⊢
∀𝑧 ∈ On
(𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}) |
29 | | tfi 7675 |
. . . . 5
⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ ∀𝑧 ∈ On (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})) → {𝑥 ∈ On ∣ 𝜑} = On) |
30 | 1, 28, 29 | mp2an 688 |
. . . 4
⊢ {𝑥 ∈ On ∣ 𝜑} = On |
31 | 30 | eqcomi 2747 |
. . 3
⊢ On =
{𝑥 ∈ On ∣ 𝜑} |
32 | 31 | rabeq2i 3412 |
. 2
⊢ (𝑥 ∈ On ↔ (𝑥 ∈ On ∧ 𝜑)) |
33 | 32 | simprbi 496 |
1
⊢ (𝑥 ∈ On → 𝜑) |