MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfis Structured version   Visualization version   GIF version

Theorem tfis 7676
Description: Transfinite Induction Schema. If all ordinal numbers less than a given number 𝑥 have a property (induction hypothesis), then all ordinal numbers have the property (conclusion). Exercise 25 of [Enderton] p. 200. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 20-Nov-2016.)
Hypothesis
Ref Expression
tfis.1 (𝑥 ∈ On → (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑))
Assertion
Ref Expression
tfis (𝑥 ∈ On → 𝜑)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfis
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4009 . . . . 5 {𝑥 ∈ On ∣ 𝜑} ⊆ On
2 nfcv 2906 . . . . . . 7 𝑥𝑧
3 nfrab1 3310 . . . . . . . . 9 𝑥{𝑥 ∈ On ∣ 𝜑}
42, 3nfss 3909 . . . . . . . 8 𝑥 𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑}
53nfcri 2893 . . . . . . . 8 𝑥 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}
64, 5nfim 1900 . . . . . . 7 𝑥(𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})
7 dfss3 3905 . . . . . . . . 9 (𝑥 ⊆ {𝑥 ∈ On ∣ 𝜑} ↔ ∀𝑦𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑})
8 sseq1 3942 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 ⊆ {𝑥 ∈ On ∣ 𝜑} ↔ 𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑}))
97, 8bitr3id 284 . . . . . . . 8 (𝑥 = 𝑧 → (∀𝑦𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ 𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑}))
10 rabid 3304 . . . . . . . . 9 (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑥 ∈ On ∧ 𝜑))
11 eleq1w 2821 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}))
1210, 11bitr3id 284 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑥 ∈ On ∧ 𝜑) ↔ 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}))
139, 12imbi12d 344 . . . . . . 7 (𝑥 = 𝑧 → ((∀𝑦𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → (𝑥 ∈ On ∧ 𝜑)) ↔ (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})))
14 sbequ 2087 . . . . . . . . . . . 12 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
15 nfcv 2906 . . . . . . . . . . . . 13 𝑥On
16 nfcv 2906 . . . . . . . . . . . . 13 𝑤On
17 nfv 1918 . . . . . . . . . . . . 13 𝑤𝜑
18 nfs1v 2155 . . . . . . . . . . . . 13 𝑥[𝑤 / 𝑥]𝜑
19 sbequ12 2247 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑))
2015, 16, 17, 18, 19cbvrabw 3414 . . . . . . . . . . . 12 {𝑥 ∈ On ∣ 𝜑} = {𝑤 ∈ On ∣ [𝑤 / 𝑥]𝜑}
2114, 20elrab2 3620 . . . . . . . . . . 11 (𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝑦 ∈ On ∧ [𝑦 / 𝑥]𝜑))
2221simprbi 496 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → [𝑦 / 𝑥]𝜑)
2322ralimi 3086 . . . . . . . . 9 (∀𝑦𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → ∀𝑦𝑥 [𝑦 / 𝑥]𝜑)
24 tfis.1 . . . . . . . . 9 (𝑥 ∈ On → (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑))
2523, 24syl5 34 . . . . . . . 8 (𝑥 ∈ On → (∀𝑦𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → 𝜑))
2625anc2li 555 . . . . . . 7 (𝑥 ∈ On → (∀𝑦𝑥 𝑦 ∈ {𝑥 ∈ On ∣ 𝜑} → (𝑥 ∈ On ∧ 𝜑)))
272, 6, 13, 26vtoclgaf 3502 . . . . . 6 (𝑧 ∈ On → (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑}))
2827rgen 3073 . . . . 5 𝑧 ∈ On (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})
29 tfi 7675 . . . . 5 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ ∀𝑧 ∈ On (𝑧 ⊆ {𝑥 ∈ On ∣ 𝜑} → 𝑧 ∈ {𝑥 ∈ On ∣ 𝜑})) → {𝑥 ∈ On ∣ 𝜑} = On)
301, 28, 29mp2an 688 . . . 4 {𝑥 ∈ On ∣ 𝜑} = On
3130eqcomi 2747 . . 3 On = {𝑥 ∈ On ∣ 𝜑}
3231rabeq2i 3412 . 2 (𝑥 ∈ On ↔ (𝑥 ∈ On ∧ 𝜑))
3332simprbi 496 1 (𝑥 ∈ On → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  [wsb 2068  wcel 2108  wral 3063  {crab 3067  wss 3883  Oncon0 6251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255
This theorem is referenced by:  tfis2f  7677
  Copyright terms: Public domain W3C validator