Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opelidres | Structured version Visualization version GIF version |
Description: Characterization of the ordered pairs in the restricted identity relation when the intersection of their component belongs to the restricting class. TODO: prove bj-idreseq 34883 from it. (Contributed by BJ, 29-Mar-2020.) |
Ref | Expression |
---|---|
bj-opelidres | ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ ( I ↾ 𝑉) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-idres 34881 | . . 3 ⊢ ( I ↾ 𝑉) = ( I ∩ (𝑉 × 𝑉)) | |
2 | 1 | eleq2i 2843 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ( I ↾ 𝑉) ↔ 〈𝐴, 𝐵〉 ∈ ( I ∩ (𝑉 × 𝑉))) |
3 | elin 3876 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ( I ∩ (𝑉 × 𝑉)) ↔ (〈𝐴, 𝐵〉 ∈ I ∧ 〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑉))) | |
4 | inex1g 5192 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
5 | bj-opelid 34877 | . . . . . 6 ⊢ ((𝐴 ∩ 𝐵) ∈ V → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) |
7 | opelxp 5563 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑉) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑉) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) |
9 | 6, 8 | anbi12d 633 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((〈𝐴, 𝐵〉 ∈ I ∧ 〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑉)) ↔ (𝐴 = 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)))) |
10 | simpl 486 | . . . . 5 ⊢ ((𝐴 = 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → 𝐴 = 𝐵) | |
11 | eleq1 2839 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) | |
12 | 11 | biimpcd 252 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐵 ∈ 𝑉)) |
13 | 12 | anc2li 559 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) |
14 | 13 | ancld 554 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 = 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)))) |
15 | 10, 14 | impbid2 229 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 = 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) ↔ 𝐴 = 𝐵)) |
16 | 9, 15 | bitrd 282 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((〈𝐴, 𝐵〉 ∈ I ∧ 〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑉)) ↔ 𝐴 = 𝐵)) |
17 | 3, 16 | syl5bb 286 | . 2 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ ( I ∩ (𝑉 × 𝑉)) ↔ 𝐴 = 𝐵)) |
18 | 2, 17 | syl5bb 286 | 1 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ ( I ↾ 𝑉) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∩ cin 3859 〈cop 4531 I cid 5432 × cxp 5525 ↾ cres 5529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-opab 5098 df-id 5433 df-xp 5533 df-rel 5534 df-res 5539 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |