Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opelidres | Structured version Visualization version GIF version |
Description: Characterization of the ordered pairs in the restricted identity relation when the intersection of their component belongs to the restricting class. TODO: prove bj-idreseq 35260 from it. (Contributed by BJ, 29-Mar-2020.) |
Ref | Expression |
---|---|
bj-opelidres | ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ ( I ↾ 𝑉) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-idres 35258 | . . 3 ⊢ ( I ↾ 𝑉) = ( I ∩ (𝑉 × 𝑉)) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ( I ↾ 𝑉) ↔ 〈𝐴, 𝐵〉 ∈ ( I ∩ (𝑉 × 𝑉))) |
3 | elin 3899 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ( I ∩ (𝑉 × 𝑉)) ↔ (〈𝐴, 𝐵〉 ∈ I ∧ 〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑉))) | |
4 | inex1g 5238 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
5 | bj-opelid 35254 | . . . . . 6 ⊢ ((𝐴 ∩ 𝐵) ∈ V → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) |
7 | opelxp 5616 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑉) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑉) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) |
9 | 6, 8 | anbi12d 630 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((〈𝐴, 𝐵〉 ∈ I ∧ 〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑉)) ↔ (𝐴 = 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)))) |
10 | simpl 482 | . . . . 5 ⊢ ((𝐴 = 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → 𝐴 = 𝐵) | |
11 | eleq1 2826 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) | |
12 | 11 | biimpcd 248 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐵 ∈ 𝑉)) |
13 | 12 | anc2li 555 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) |
14 | 13 | ancld 550 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 = 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)))) |
15 | 10, 14 | impbid2 225 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 = 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) ↔ 𝐴 = 𝐵)) |
16 | 9, 15 | bitrd 278 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((〈𝐴, 𝐵〉 ∈ I ∧ 〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑉)) ↔ 𝐴 = 𝐵)) |
17 | 3, 16 | syl5bb 282 | . 2 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ ( I ∩ (𝑉 × 𝑉)) ↔ 𝐴 = 𝐵)) |
18 | 2, 17 | syl5bb 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ ( I ↾ 𝑉) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 〈cop 4564 I cid 5479 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-res 5592 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |