![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opelidres | Structured version Visualization version GIF version |
Description: Characterization of the ordered pairs in the restricted identity relation when the intersection of their component belongs to the restricting class. TODO: prove bj-idreseq 36347 from it. (Contributed by BJ, 29-Mar-2020.) |
Ref | Expression |
---|---|
bj-opelidres | ⊢ (𝐴 ∈ 𝑉 → (⟨𝐴, 𝐵⟩ ∈ ( I ↾ 𝑉) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-idres 36345 | . . 3 ⊢ ( I ↾ 𝑉) = ( I ∩ (𝑉 × 𝑉)) | |
2 | 1 | eleq2i 2824 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ ( I ↾ 𝑉) ↔ ⟨𝐴, 𝐵⟩ ∈ ( I ∩ (𝑉 × 𝑉))) |
3 | elin 3965 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ ( I ∩ (𝑉 × 𝑉)) ↔ (⟨𝐴, 𝐵⟩ ∈ I ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉))) | |
4 | inex1g 5320 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
5 | bj-opelid 36341 | . . . . . 6 ⊢ ((𝐴 ∩ 𝐵) ∈ V → (⟨𝐴, 𝐵⟩ ∈ I ↔ 𝐴 = 𝐵)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (⟨𝐴, 𝐵⟩ ∈ I ↔ 𝐴 = 𝐵)) |
7 | opelxp 5713 | . . . . . 6 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) |
9 | 6, 8 | anbi12d 630 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((⟨𝐴, 𝐵⟩ ∈ I ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉)) ↔ (𝐴 = 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)))) |
10 | simpl 482 | . . . . 5 ⊢ ((𝐴 = 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → 𝐴 = 𝐵) | |
11 | eleq1 2820 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) | |
12 | 11 | biimpcd 248 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐵 ∈ 𝑉)) |
13 | 12 | anc2li 555 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) |
14 | 13 | ancld 550 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 = 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)))) |
15 | 10, 14 | impbid2 225 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 = 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) ↔ 𝐴 = 𝐵)) |
16 | 9, 15 | bitrd 278 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((⟨𝐴, 𝐵⟩ ∈ I ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉)) ↔ 𝐴 = 𝐵)) |
17 | 3, 16 | bitrid 282 | . 2 ⊢ (𝐴 ∈ 𝑉 → (⟨𝐴, 𝐵⟩ ∈ ( I ∩ (𝑉 × 𝑉)) ↔ 𝐴 = 𝐵)) |
18 | 2, 17 | bitrid 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (⟨𝐴, 𝐵⟩ ∈ ( I ↾ 𝑉) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∩ cin 3948 ⟨cop 4635 I cid 5574 × cxp 5675 ↾ cres 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-res 5689 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |