Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-opelidres Structured version   Visualization version   GIF version

Theorem bj-opelidres 35332
Description: Characterization of the ordered pairs in the restricted identity relation when the intersection of their component belongs to the restricting class. TODO: prove bj-idreseq 35333 from it. (Contributed by BJ, 29-Mar-2020.)
Assertion
Ref Expression
bj-opelidres (𝐴𝑉 → (⟨𝐴, 𝐵⟩ ∈ ( I ↾ 𝑉) ↔ 𝐴 = 𝐵))

Proof of Theorem bj-opelidres
StepHypRef Expression
1 bj-idres 35331 . . 3 ( I ↾ 𝑉) = ( I ∩ (𝑉 × 𝑉))
21eleq2i 2830 . 2 (⟨𝐴, 𝐵⟩ ∈ ( I ↾ 𝑉) ↔ ⟨𝐴, 𝐵⟩ ∈ ( I ∩ (𝑉 × 𝑉)))
3 elin 3903 . . 3 (⟨𝐴, 𝐵⟩ ∈ ( I ∩ (𝑉 × 𝑉)) ↔ (⟨𝐴, 𝐵⟩ ∈ I ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉)))
4 inex1g 5243 . . . . . 6 (𝐴𝑉 → (𝐴𝐵) ∈ V)
5 bj-opelid 35327 . . . . . 6 ((𝐴𝐵) ∈ V → (⟨𝐴, 𝐵⟩ ∈ I ↔ 𝐴 = 𝐵))
64, 5syl 17 . . . . 5 (𝐴𝑉 → (⟨𝐴, 𝐵⟩ ∈ I ↔ 𝐴 = 𝐵))
7 opelxp 5625 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉) ↔ (𝐴𝑉𝐵𝑉))
87a1i 11 . . . . 5 (𝐴𝑉 → (⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉) ↔ (𝐴𝑉𝐵𝑉)))
96, 8anbi12d 631 . . . 4 (𝐴𝑉 → ((⟨𝐴, 𝐵⟩ ∈ I ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉)) ↔ (𝐴 = 𝐵 ∧ (𝐴𝑉𝐵𝑉))))
10 simpl 483 . . . . 5 ((𝐴 = 𝐵 ∧ (𝐴𝑉𝐵𝑉)) → 𝐴 = 𝐵)
11 eleq1 2826 . . . . . . . 8 (𝐴 = 𝐵 → (𝐴𝑉𝐵𝑉))
1211biimpcd 248 . . . . . . 7 (𝐴𝑉 → (𝐴 = 𝐵𝐵𝑉))
1312anc2li 556 . . . . . 6 (𝐴𝑉 → (𝐴 = 𝐵 → (𝐴𝑉𝐵𝑉)))
1413ancld 551 . . . . 5 (𝐴𝑉 → (𝐴 = 𝐵 → (𝐴 = 𝐵 ∧ (𝐴𝑉𝐵𝑉))))
1510, 14impbid2 225 . . . 4 (𝐴𝑉 → ((𝐴 = 𝐵 ∧ (𝐴𝑉𝐵𝑉)) ↔ 𝐴 = 𝐵))
169, 15bitrd 278 . . 3 (𝐴𝑉 → ((⟨𝐴, 𝐵⟩ ∈ I ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉)) ↔ 𝐴 = 𝐵))
173, 16syl5bb 283 . 2 (𝐴𝑉 → (⟨𝐴, 𝐵⟩ ∈ ( I ∩ (𝑉 × 𝑉)) ↔ 𝐴 = 𝐵))
182, 17syl5bb 283 1 (𝐴𝑉 → (⟨𝐴, 𝐵⟩ ∈ ( I ↾ 𝑉) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  cop 4567   I cid 5488   × cxp 5587  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-res 5601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator