| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opelidres | Structured version Visualization version GIF version | ||
| Description: Characterization of the ordered pairs in the restricted identity relation when the intersection of their component belongs to the restricting class. TODO: prove bj-idreseq 37147 from it. (Contributed by BJ, 29-Mar-2020.) |
| Ref | Expression |
|---|---|
| bj-opelidres | ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ ( I ↾ 𝑉) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-idres 37145 | . . 3 ⊢ ( I ↾ 𝑉) = ( I ∩ (𝑉 × 𝑉)) | |
| 2 | 1 | eleq2i 2821 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ( I ↾ 𝑉) ↔ 〈𝐴, 𝐵〉 ∈ ( I ∩ (𝑉 × 𝑉))) |
| 3 | elin 3938 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ ( I ∩ (𝑉 × 𝑉)) ↔ (〈𝐴, 𝐵〉 ∈ I ∧ 〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑉))) | |
| 4 | inex1g 5282 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
| 5 | bj-opelid 37141 | . . . . . 6 ⊢ ((𝐴 ∩ 𝐵) ∈ V → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) |
| 7 | opelxp 5682 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑉) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑉) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) |
| 9 | 6, 8 | anbi12d 632 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((〈𝐴, 𝐵〉 ∈ I ∧ 〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑉)) ↔ (𝐴 = 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)))) |
| 10 | simpl 482 | . . . . 5 ⊢ ((𝐴 = 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → 𝐴 = 𝐵) | |
| 11 | eleq1 2817 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) | |
| 12 | 11 | biimpcd 249 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐵 ∈ 𝑉)) |
| 13 | 12 | anc2li 555 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) |
| 14 | 13 | ancld 550 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 = 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)))) |
| 15 | 10, 14 | impbid2 226 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 = 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) ↔ 𝐴 = 𝐵)) |
| 16 | 9, 15 | bitrd 279 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((〈𝐴, 𝐵〉 ∈ I ∧ 〈𝐴, 𝐵〉 ∈ (𝑉 × 𝑉)) ↔ 𝐴 = 𝐵)) |
| 17 | 3, 16 | bitrid 283 | . 2 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ ( I ∩ (𝑉 × 𝑉)) ↔ 𝐴 = 𝐵)) |
| 18 | 2, 17 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ ( I ↾ 𝑉) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ∩ cin 3921 〈cop 4603 I cid 5540 × cxp 5644 ↾ cres 5648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 df-res 5658 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |