MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothpwex Structured version   Visualization version   GIF version

Theorem grothpwex 10822
Description: Derive the Axiom of Power Sets from the Tarski-Grothendieck axiom ax-groth 10818. Note that ax-pow 5364 is not used by the proof. Use axpweq 5349 to obtain ax-pow 5364. Use pwex 5379 or pwexg 5377 instead. (Contributed by GΓ©rard Lang, 22-Jun-2009.) (New usage is discouraged.)
Assertion
Ref Expression
grothpwex 𝒫 π‘₯ ∈ V

Proof of Theorem grothpwex
Dummy variables 𝑦 𝑧 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 484 . . . . . . 7 ((𝒫 𝑧 βŠ† 𝑦 ∧ βˆƒπ‘€ ∈ 𝑦 𝒫 𝑧 βŠ† 𝑀) β†’ 𝒫 𝑧 βŠ† 𝑦)
21ralimi 3084 . . . . . 6 (βˆ€π‘§ ∈ 𝑦 (𝒫 𝑧 βŠ† 𝑦 ∧ βˆƒπ‘€ ∈ 𝑦 𝒫 𝑧 βŠ† 𝑀) β†’ βˆ€π‘§ ∈ 𝑦 𝒫 𝑧 βŠ† 𝑦)
3 pweq 4617 . . . . . . . 8 (𝑧 = π‘₯ β†’ 𝒫 𝑧 = 𝒫 π‘₯)
43sseq1d 4014 . . . . . . 7 (𝑧 = π‘₯ β†’ (𝒫 𝑧 βŠ† 𝑦 ↔ 𝒫 π‘₯ βŠ† 𝑦))
54rspccv 3610 . . . . . 6 (βˆ€π‘§ ∈ 𝑦 𝒫 𝑧 βŠ† 𝑦 β†’ (π‘₯ ∈ 𝑦 β†’ 𝒫 π‘₯ βŠ† 𝑦))
62, 5syl 17 . . . . 5 (βˆ€π‘§ ∈ 𝑦 (𝒫 𝑧 βŠ† 𝑦 ∧ βˆƒπ‘€ ∈ 𝑦 𝒫 𝑧 βŠ† 𝑀) β†’ (π‘₯ ∈ 𝑦 β†’ 𝒫 π‘₯ βŠ† 𝑦))
76anim2i 618 . . . 4 ((π‘₯ ∈ 𝑦 ∧ βˆ€π‘§ ∈ 𝑦 (𝒫 𝑧 βŠ† 𝑦 ∧ βˆƒπ‘€ ∈ 𝑦 𝒫 𝑧 βŠ† 𝑀)) β†’ (π‘₯ ∈ 𝑦 ∧ (π‘₯ ∈ 𝑦 β†’ 𝒫 π‘₯ βŠ† 𝑦)))
873adant3 1133 . . 3 ((π‘₯ ∈ 𝑦 ∧ βˆ€π‘§ ∈ 𝑦 (𝒫 𝑧 βŠ† 𝑦 ∧ βˆƒπ‘€ ∈ 𝑦 𝒫 𝑧 βŠ† 𝑀) ∧ βˆ€π‘§ ∈ 𝒫 𝑦(𝑧 β‰ˆ 𝑦 ∨ 𝑧 ∈ 𝑦)) β†’ (π‘₯ ∈ 𝑦 ∧ (π‘₯ ∈ 𝑦 β†’ 𝒫 π‘₯ βŠ† 𝑦)))
9 pm3.35 802 . . 3 ((π‘₯ ∈ 𝑦 ∧ (π‘₯ ∈ 𝑦 β†’ 𝒫 π‘₯ βŠ† 𝑦)) β†’ 𝒫 π‘₯ βŠ† 𝑦)
10 vex 3479 . . . 4 𝑦 ∈ V
1110ssex 5322 . . 3 (𝒫 π‘₯ βŠ† 𝑦 β†’ 𝒫 π‘₯ ∈ V)
128, 9, 113syl 18 . 2 ((π‘₯ ∈ 𝑦 ∧ βˆ€π‘§ ∈ 𝑦 (𝒫 𝑧 βŠ† 𝑦 ∧ βˆƒπ‘€ ∈ 𝑦 𝒫 𝑧 βŠ† 𝑀) ∧ βˆ€π‘§ ∈ 𝒫 𝑦(𝑧 β‰ˆ 𝑦 ∨ 𝑧 ∈ 𝑦)) β†’ 𝒫 π‘₯ ∈ V)
13 axgroth5 10819 . 2 βˆƒπ‘¦(π‘₯ ∈ 𝑦 ∧ βˆ€π‘§ ∈ 𝑦 (𝒫 𝑧 βŠ† 𝑦 ∧ βˆƒπ‘€ ∈ 𝑦 𝒫 𝑧 βŠ† 𝑀) ∧ βˆ€π‘§ ∈ 𝒫 𝑦(𝑧 β‰ˆ 𝑦 ∨ 𝑧 ∈ 𝑦))
1412, 13exlimiiv 1935 1 𝒫 π‘₯ ∈ V
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∨ wo 846   ∧ w3a 1088   ∈ wcel 2107  βˆ€wral 3062  βˆƒwrex 3071  Vcvv 3475   βŠ† wss 3949  π’« cpw 4603   class class class wbr 5149   β‰ˆ cen 8936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-groth 10818
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-in 3956  df-ss 3966  df-pw 4605
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator