Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothpwex Structured version   Visualization version   GIF version

Theorem grothpwex 9964
 Description: Derive the Axiom of Power Sets from the Tarski-Grothendieck axiom ax-groth 9960. Note that ax-pow 5065 is not used by the proof. Use axpweq 5064 to obtain ax-pow 5065. Use pwex 5080 or pwexg 5078 instead. (Contributed by Gérard Lang, 22-Jun-2009.) (New usage is discouraged.)
Assertion
Ref Expression
grothpwex 𝒫 𝑥 ∈ V

Proof of Theorem grothpwex
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 476 . . . . . . 7 ((𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) → 𝒫 𝑧𝑦)
21ralimi 3161 . . . . . 6 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) → ∀𝑧𝑦 𝒫 𝑧𝑦)
3 pweq 4381 . . . . . . . 8 (𝑧 = 𝑥 → 𝒫 𝑧 = 𝒫 𝑥)
43sseq1d 3857 . . . . . . 7 (𝑧 = 𝑥 → (𝒫 𝑧𝑦 ↔ 𝒫 𝑥𝑦))
54rspccv 3523 . . . . . 6 (∀𝑧𝑦 𝒫 𝑧𝑦 → (𝑥𝑦 → 𝒫 𝑥𝑦))
62, 5syl 17 . . . . 5 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) → (𝑥𝑦 → 𝒫 𝑥𝑦))
76anim2i 610 . . . 4 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤)) → (𝑥𝑦 ∧ (𝑥𝑦 → 𝒫 𝑥𝑦)))
873adant3 1166 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) → (𝑥𝑦 ∧ (𝑥𝑦 → 𝒫 𝑥𝑦)))
9 pm3.35 837 . . 3 ((𝑥𝑦 ∧ (𝑥𝑦 → 𝒫 𝑥𝑦)) → 𝒫 𝑥𝑦)
10 vex 3417 . . . 4 𝑦 ∈ V
1110ssex 5027 . . 3 (𝒫 𝑥𝑦 → 𝒫 𝑥 ∈ V)
128, 9, 113syl 18 . 2 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) → 𝒫 𝑥 ∈ V)
13 axgroth5 9961 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
1412, 13exlimiiv 2030 1 𝒫 𝑥 ∈ V
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∨ wo 878   ∧ w3a 1111   ∈ wcel 2164  ∀wral 3117  ∃wrex 3118  Vcvv 3414   ⊆ wss 3798  𝒫 cpw 4378   class class class wbr 4873   ≈ cen 8219 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-ext 2803  ax-sep 5005  ax-groth 9960 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-v 3416  df-in 3805  df-ss 3812  df-pw 4380 This theorem is referenced by:  isrnsigaOLD  30709
 Copyright terms: Public domain W3C validator