![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grothpwex | Structured version Visualization version GIF version |
Description: Derive the Axiom of Power Sets from the Tarski-Grothendieck axiom ax-groth 9960. Note that ax-pow 5065 is not used by the proof. Use axpweq 5064 to obtain ax-pow 5065. Use pwex 5080 or pwexg 5078 instead. (Contributed by Gérard Lang, 22-Jun-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grothpwex | ⊢ 𝒫 𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 476 | . . . . . . 7 ⊢ ((𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) → 𝒫 𝑧 ⊆ 𝑦) | |
2 | 1 | ralimi 3161 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) → ∀𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦) |
3 | pweq 4381 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → 𝒫 𝑧 = 𝒫 𝑥) | |
4 | 3 | sseq1d 3857 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝒫 𝑧 ⊆ 𝑦 ↔ 𝒫 𝑥 ⊆ 𝑦)) |
5 | 4 | rspccv 3523 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦 → (𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦)) |
6 | 2, 5 | syl 17 | . . . . 5 ⊢ (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) → (𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦)) |
7 | 6 | anim2i 610 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤)) → (𝑥 ∈ 𝑦 ∧ (𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦))) |
8 | 7 | 3adant3 1166 | . . 3 ⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) → (𝑥 ∈ 𝑦 ∧ (𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦))) |
9 | pm3.35 837 | . . 3 ⊢ ((𝑥 ∈ 𝑦 ∧ (𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦)) → 𝒫 𝑥 ⊆ 𝑦) | |
10 | vex 3417 | . . . 4 ⊢ 𝑦 ∈ V | |
11 | 10 | ssex 5027 | . . 3 ⊢ (𝒫 𝑥 ⊆ 𝑦 → 𝒫 𝑥 ∈ V) |
12 | 8, 9, 11 | 3syl 18 | . 2 ⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) → 𝒫 𝑥 ∈ V) |
13 | axgroth5 9961 | . 2 ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) | |
14 | 12, 13 | exlimiiv 2030 | 1 ⊢ 𝒫 𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∨ wo 878 ∧ w3a 1111 ∈ wcel 2164 ∀wral 3117 ∃wrex 3118 Vcvv 3414 ⊆ wss 3798 𝒫 cpw 4378 class class class wbr 4873 ≈ cen 8219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 ax-sep 5005 ax-groth 9960 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-v 3416 df-in 3805 df-ss 3812 df-pw 4380 |
This theorem is referenced by: isrnsigaOLD 30709 |
Copyright terms: Public domain | W3C validator |