MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothtsk Structured version   Visualization version   GIF version

Theorem grothtsk 10414
Description: The Tarski-Grothendieck Axiom, using abbreviations. (Contributed by Mario Carneiro, 28-May-2013.)
Assertion
Ref Expression
grothtsk Tarski = V

Proof of Theorem grothtsk
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axgroth5 10403 . . . . 5 𝑥(𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))
2 eltskg 10329 . . . . . . . . 9 (𝑥 ∈ V → (𝑥 ∈ Tarski ↔ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))))
32elv 3404 . . . . . . . 8 (𝑥 ∈ Tarski ↔ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)))
43anbi2i 626 . . . . . . 7 ((𝑤𝑥𝑥 ∈ Tarski) ↔ (𝑤𝑥 ∧ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))))
5 3anass 1097 . . . . . . 7 ((𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)) ↔ (𝑤𝑥 ∧ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))))
64, 5bitr4i 281 . . . . . 6 ((𝑤𝑥𝑥 ∈ Tarski) ↔ (𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)))
76exbii 1855 . . . . 5 (∃𝑥(𝑤𝑥𝑥 ∈ Tarski) ↔ ∃𝑥(𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)))
81, 7mpbir 234 . . . 4 𝑥(𝑤𝑥𝑥 ∈ Tarski)
9 eluni 4808 . . . 4 (𝑤 Tarski ↔ ∃𝑥(𝑤𝑥𝑥 ∈ Tarski))
108, 9mpbir 234 . . 3 𝑤 Tarski
11 vex 3402 . . 3 𝑤 ∈ V
1210, 112th 267 . 2 (𝑤 Tarski ↔ 𝑤 ∈ V)
1312eqriv 2733 1 Tarski = V
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wex 1787  wcel 2112  wral 3051  wrex 3052  Vcvv 3398  wss 3853  𝒫 cpw 4499   cuni 4805   class class class wbr 5039  cen 8601  Tarskictsk 10327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708  ax-groth 10402
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-tsk 10328
This theorem is referenced by:  inaprc  10415  tskmval  10418  tskmcl  10420
  Copyright terms: Public domain W3C validator