![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grothtsk | Structured version Visualization version GIF version |
Description: The Tarski-Grothendieck Axiom, using abbreviations. (Contributed by Mario Carneiro, 28-May-2013.) |
Ref | Expression |
---|---|
grothtsk | ⊢ ∪ Tarski = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axgroth5 10818 | . . . . 5 ⊢ ∃𝑥(𝑤 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)) | |
2 | eltskg 10744 | . . . . . . . . 9 ⊢ (𝑥 ∈ V → (𝑥 ∈ Tarski ↔ (∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)))) | |
3 | 2 | elv 3480 | . . . . . . . 8 ⊢ (𝑥 ∈ Tarski ↔ (∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥))) |
4 | 3 | anbi2i 623 | . . . . . . 7 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski) ↔ (𝑤 ∈ 𝑥 ∧ (∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)))) |
5 | 3anass 1095 | . . . . . . 7 ⊢ ((𝑤 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)) ↔ (𝑤 ∈ 𝑥 ∧ (∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)))) | |
6 | 4, 5 | bitr4i 277 | . . . . . 6 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski) ↔ (𝑤 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥))) |
7 | 6 | exbii 1850 | . . . . 5 ⊢ (∃𝑥(𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski) ↔ ∃𝑥(𝑤 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥))) |
8 | 1, 7 | mpbir 230 | . . . 4 ⊢ ∃𝑥(𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski) |
9 | eluni 4911 | . . . 4 ⊢ (𝑤 ∈ ∪ Tarski ↔ ∃𝑥(𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski)) | |
10 | 8, 9 | mpbir 230 | . . 3 ⊢ 𝑤 ∈ ∪ Tarski |
11 | vex 3478 | . . 3 ⊢ 𝑤 ∈ V | |
12 | 10, 11 | 2th 263 | . 2 ⊢ (𝑤 ∈ ∪ Tarski ↔ 𝑤 ∈ V) |
13 | 12 | eqriv 2729 | 1 ⊢ ∪ Tarski = V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 Vcvv 3474 ⊆ wss 3948 𝒫 cpw 4602 ∪ cuni 4908 class class class wbr 5148 ≈ cen 8935 Tarskictsk 10742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-groth 10817 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-tsk 10743 |
This theorem is referenced by: inaprc 10830 tskmval 10833 tskmcl 10835 |
Copyright terms: Public domain | W3C validator |