MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothtsk Structured version   Visualization version   GIF version

Theorem grothtsk 10251
Description: The Tarski-Grothendieck Axiom, using abbreviations. (Contributed by Mario Carneiro, 28-May-2013.)
Assertion
Ref Expression
grothtsk Tarski = V

Proof of Theorem grothtsk
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axgroth5 10240 . . . . 5 𝑥(𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))
2 eltskg 10166 . . . . . . . . 9 (𝑥 ∈ V → (𝑥 ∈ Tarski ↔ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))))
32elv 3499 . . . . . . . 8 (𝑥 ∈ Tarski ↔ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)))
43anbi2i 624 . . . . . . 7 ((𝑤𝑥𝑥 ∈ Tarski) ↔ (𝑤𝑥 ∧ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))))
5 3anass 1091 . . . . . . 7 ((𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)) ↔ (𝑤𝑥 ∧ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))))
64, 5bitr4i 280 . . . . . 6 ((𝑤𝑥𝑥 ∈ Tarski) ↔ (𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)))
76exbii 1844 . . . . 5 (∃𝑥(𝑤𝑥𝑥 ∈ Tarski) ↔ ∃𝑥(𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)))
81, 7mpbir 233 . . . 4 𝑥(𝑤𝑥𝑥 ∈ Tarski)
9 eluni 4834 . . . 4 (𝑤 Tarski ↔ ∃𝑥(𝑤𝑥𝑥 ∈ Tarski))
108, 9mpbir 233 . . 3 𝑤 Tarski
11 vex 3497 . . 3 𝑤 ∈ V
1210, 112th 266 . 2 (𝑤 Tarski ↔ 𝑤 ∈ V)
1312eqriv 2818 1 Tarski = V
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wral 3138  wrex 3139  Vcvv 3494  wss 3935  𝒫 cpw 4538   cuni 4831   class class class wbr 5058  cen 8500  Tarskictsk 10164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-groth 10239
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-tsk 10165
This theorem is referenced by:  inaprc  10252  tskmval  10255  tskmcl  10257
  Copyright terms: Public domain W3C validator