![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grothtsk | Structured version Visualization version GIF version |
Description: The Tarski-Grothendieck Axiom, using abbreviations. (Contributed by Mario Carneiro, 28-May-2013.) |
Ref | Expression |
---|---|
grothtsk | ⊢ ∪ Tarski = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axgroth5 10893 | . . . . 5 ⊢ ∃𝑥(𝑤 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)) | |
2 | eltskg 10819 | . . . . . . . . 9 ⊢ (𝑥 ∈ V → (𝑥 ∈ Tarski ↔ (∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)))) | |
3 | 2 | elv 3493 | . . . . . . . 8 ⊢ (𝑥 ∈ Tarski ↔ (∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥))) |
4 | 3 | anbi2i 622 | . . . . . . 7 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski) ↔ (𝑤 ∈ 𝑥 ∧ (∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)))) |
5 | 3anass 1095 | . . . . . . 7 ⊢ ((𝑤 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)) ↔ (𝑤 ∈ 𝑥 ∧ (∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)))) | |
6 | 4, 5 | bitr4i 278 | . . . . . 6 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski) ↔ (𝑤 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥))) |
7 | 6 | exbii 1846 | . . . . 5 ⊢ (∃𝑥(𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski) ↔ ∃𝑥(𝑤 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥))) |
8 | 1, 7 | mpbir 231 | . . . 4 ⊢ ∃𝑥(𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski) |
9 | eluni 4934 | . . . 4 ⊢ (𝑤 ∈ ∪ Tarski ↔ ∃𝑥(𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski)) | |
10 | 8, 9 | mpbir 231 | . . 3 ⊢ 𝑤 ∈ ∪ Tarski |
11 | vex 3492 | . . 3 ⊢ 𝑤 ∈ V | |
12 | 10, 11 | 2th 264 | . 2 ⊢ (𝑤 ∈ ∪ Tarski ↔ 𝑤 ∈ V) |
13 | 12 | eqriv 2737 | 1 ⊢ ∪ Tarski = V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 class class class wbr 5166 ≈ cen 9000 Tarskictsk 10817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-groth 10892 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-tsk 10818 |
This theorem is referenced by: inaprc 10905 tskmval 10908 tskmcl 10910 |
Copyright terms: Public domain | W3C validator |