MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothtsk Structured version   Visualization version   GIF version

Theorem grothtsk 10726
Description: The Tarski-Grothendieck Axiom, using abbreviations. (Contributed by Mario Carneiro, 28-May-2013.)
Assertion
Ref Expression
grothtsk Tarski = V

Proof of Theorem grothtsk
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axgroth5 10715 . . . . 5 𝑥(𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))
2 eltskg 10641 . . . . . . . . 9 (𝑥 ∈ V → (𝑥 ∈ Tarski ↔ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))))
32elv 3441 . . . . . . . 8 (𝑥 ∈ Tarski ↔ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)))
43anbi2i 623 . . . . . . 7 ((𝑤𝑥𝑥 ∈ Tarski) ↔ (𝑤𝑥 ∧ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))))
5 3anass 1094 . . . . . . 7 ((𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)) ↔ (𝑤𝑥 ∧ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))))
64, 5bitr4i 278 . . . . . 6 ((𝑤𝑥𝑥 ∈ Tarski) ↔ (𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)))
76exbii 1849 . . . . 5 (∃𝑥(𝑤𝑥𝑥 ∈ Tarski) ↔ ∃𝑥(𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)))
81, 7mpbir 231 . . . 4 𝑥(𝑤𝑥𝑥 ∈ Tarski)
9 eluni 4862 . . . 4 (𝑤 Tarski ↔ ∃𝑥(𝑤𝑥𝑥 ∈ Tarski))
108, 9mpbir 231 . . 3 𝑤 Tarski
11 vex 3440 . . 3 𝑤 ∈ V
1210, 112th 264 . 2 (𝑤 Tarski ↔ 𝑤 ∈ V)
1312eqriv 2728 1 Tarski = V
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3902  𝒫 cpw 4550   cuni 4859   class class class wbr 5091  cen 8866  Tarskictsk 10639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-groth 10714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-tsk 10640
This theorem is referenced by:  inaprc  10727  tskmval  10730  tskmcl  10732
  Copyright terms: Public domain W3C validator