Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grothtsk | Structured version Visualization version GIF version |
Description: The Tarski-Grothendieck Axiom, using abbreviations. (Contributed by Mario Carneiro, 28-May-2013.) |
Ref | Expression |
---|---|
grothtsk | ⊢ ∪ Tarski = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axgroth5 10511 | . . . . 5 ⊢ ∃𝑥(𝑤 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)) | |
2 | eltskg 10437 | . . . . . . . . 9 ⊢ (𝑥 ∈ V → (𝑥 ∈ Tarski ↔ (∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)))) | |
3 | 2 | elv 3428 | . . . . . . . 8 ⊢ (𝑥 ∈ Tarski ↔ (∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥))) |
4 | 3 | anbi2i 622 | . . . . . . 7 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski) ↔ (𝑤 ∈ 𝑥 ∧ (∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)))) |
5 | 3anass 1093 | . . . . . . 7 ⊢ ((𝑤 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)) ↔ (𝑤 ∈ 𝑥 ∧ (∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)))) | |
6 | 4, 5 | bitr4i 277 | . . . . . 6 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski) ↔ (𝑤 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥))) |
7 | 6 | exbii 1851 | . . . . 5 ⊢ (∃𝑥(𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski) ↔ ∃𝑥(𝑤 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥))) |
8 | 1, 7 | mpbir 230 | . . . 4 ⊢ ∃𝑥(𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski) |
9 | eluni 4839 | . . . 4 ⊢ (𝑤 ∈ ∪ Tarski ↔ ∃𝑥(𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski)) | |
10 | 8, 9 | mpbir 230 | . . 3 ⊢ 𝑤 ∈ ∪ Tarski |
11 | vex 3426 | . . 3 ⊢ 𝑤 ∈ V | |
12 | 10, 11 | 2th 263 | . 2 ⊢ (𝑤 ∈ ∪ Tarski ↔ 𝑤 ∈ V) |
13 | 12 | eqriv 2735 | 1 ⊢ ∪ Tarski = V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 class class class wbr 5070 ≈ cen 8688 Tarskictsk 10435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-groth 10510 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-tsk 10436 |
This theorem is referenced by: inaprc 10523 tskmval 10526 tskmcl 10528 |
Copyright terms: Public domain | W3C validator |