MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothtsk Structured version   Visualization version   GIF version

Theorem grothtsk 10701
Description: The Tarski-Grothendieck Axiom, using abbreviations. (Contributed by Mario Carneiro, 28-May-2013.)
Assertion
Ref Expression
grothtsk Tarski = V

Proof of Theorem grothtsk
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axgroth5 10690 . . . . 5 𝑥(𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))
2 eltskg 10616 . . . . . . . . 9 (𝑥 ∈ V → (𝑥 ∈ Tarski ↔ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))))
32elv 3449 . . . . . . . 8 (𝑥 ∈ Tarski ↔ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)))
43anbi2i 624 . . . . . . 7 ((𝑤𝑥𝑥 ∈ Tarski) ↔ (𝑤𝑥 ∧ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))))
5 3anass 1095 . . . . . . 7 ((𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)) ↔ (𝑤𝑥 ∧ (∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥))))
64, 5bitr4i 278 . . . . . 6 ((𝑤𝑥𝑥 ∈ Tarski) ↔ (𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)))
76exbii 1850 . . . . 5 (∃𝑥(𝑤𝑥𝑥 ∈ Tarski) ↔ ∃𝑥(𝑤𝑥 ∧ ∀𝑦𝑥 (𝒫 𝑦𝑥 ∧ ∃𝑧𝑥 𝒫 𝑦𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦𝑥𝑦𝑥)))
81, 7mpbir 230 . . . 4 𝑥(𝑤𝑥𝑥 ∈ Tarski)
9 eluni 4863 . . . 4 (𝑤 Tarski ↔ ∃𝑥(𝑤𝑥𝑥 ∈ Tarski))
108, 9mpbir 230 . . 3 𝑤 Tarski
11 vex 3447 . . 3 𝑤 ∈ V
1210, 112th 264 . 2 (𝑤 Tarski ↔ 𝑤 ∈ V)
1312eqriv 2734 1 Tarski = V
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wo 845  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wral 3062  wrex 3071  Vcvv 3443  wss 3905  𝒫 cpw 4555   cuni 4860   class class class wbr 5100  cen 8810  Tarskictsk 10614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-groth 10689
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-br 5101  df-tsk 10615
This theorem is referenced by:  inaprc  10702  tskmval  10705  tskmcl  10707
  Copyright terms: Public domain W3C validator