Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grothpw | Structured version Visualization version GIF version |
Description: Derive the Axiom of Power Sets ax-pow 5290 from the Tarski-Grothendieck axiom ax-groth 10577. That it follows is mentioned by Bob Solovay at http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html 10577. Note that ax-pow 5290 is not used by the proof. (Contributed by Gérard Lang, 22-Jun-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grothpw | ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . . . . . 8 ⊢ ((𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) → 𝒫 𝑧 ⊆ 𝑦) | |
2 | 1 | ralimi 3087 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) → ∀𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦) |
3 | pweq 4551 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → 𝒫 𝑧 = 𝒫 𝑥) | |
4 | 3 | sseq1d 3953 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝒫 𝑧 ⊆ 𝑦 ↔ 𝒫 𝑥 ⊆ 𝑦)) |
5 | 4 | rspccv 3558 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦 → (𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦)) |
6 | 2, 5 | syl 17 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) → (𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦)) |
7 | 6 | anim2i 617 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤)) → (𝑥 ∈ 𝑦 ∧ (𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦))) |
8 | 7 | 3adant3 1131 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) → (𝑥 ∈ 𝑦 ∧ (𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦))) |
9 | pm3.35 800 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ (𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦)) → 𝒫 𝑥 ⊆ 𝑦) | |
10 | vex 3435 | . . . . 5 ⊢ 𝑦 ∈ V | |
11 | 10 | ssex 5247 | . . . 4 ⊢ (𝒫 𝑥 ⊆ 𝑦 → 𝒫 𝑥 ∈ V) |
12 | 8, 9, 11 | 3syl 18 | . . 3 ⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) → 𝒫 𝑥 ∈ V) |
13 | axgroth5 10578 | . . 3 ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) | |
14 | 12, 13 | exlimiiv 1934 | . 2 ⊢ 𝒫 𝑥 ∈ V |
15 | axpweq 5289 | . 2 ⊢ (𝒫 𝑥 ∈ V ↔ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | |
16 | 14, 15 | mpbi 229 | 1 ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 ∀wal 1537 ∃wex 1782 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 Vcvv 3431 ⊆ wss 3888 𝒫 cpw 4535 class class class wbr 5076 ≈ cen 8728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5225 ax-groth 10577 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-in 3895 df-ss 3905 df-pw 4537 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |