![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grothpw | Structured version Visualization version GIF version |
Description: Derive the Axiom of Power Sets ax-pow 5365 from the Tarski-Grothendieck axiom ax-groth 10848. That it follows is mentioned by Bob Solovay at http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html 10848. Note that ax-pow 5365 is not used by the proof. (Contributed by Gérard Lang, 22-Jun-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grothpw | ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . . . . . 8 ⊢ ((𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) → 𝒫 𝑧 ⊆ 𝑦) | |
2 | 1 | ralimi 3072 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) → ∀𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦) |
3 | pweq 4618 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → 𝒫 𝑧 = 𝒫 𝑥) | |
4 | 3 | sseq1d 4008 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝒫 𝑧 ⊆ 𝑦 ↔ 𝒫 𝑥 ⊆ 𝑦)) |
5 | 4 | rspccv 3603 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦 → (𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦)) |
6 | 2, 5 | syl 17 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) → (𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦)) |
7 | 6 | anim2i 615 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤)) → (𝑥 ∈ 𝑦 ∧ (𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦))) |
8 | 7 | 3adant3 1129 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) → (𝑥 ∈ 𝑦 ∧ (𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦))) |
9 | pm3.35 801 | . . . 4 ⊢ ((𝑥 ∈ 𝑦 ∧ (𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦)) → 𝒫 𝑥 ⊆ 𝑦) | |
10 | vex 3465 | . . . . 5 ⊢ 𝑦 ∈ V | |
11 | 10 | ssex 5322 | . . . 4 ⊢ (𝒫 𝑥 ⊆ 𝑦 → 𝒫 𝑥 ∈ V) |
12 | 8, 9, 11 | 3syl 18 | . . 3 ⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) → 𝒫 𝑥 ∈ V) |
13 | axgroth5 10849 | . . 3 ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) | |
14 | 12, 13 | exlimiiv 1926 | . 2 ⊢ 𝒫 𝑥 ∈ V |
15 | axpweq 5350 | . 2 ⊢ (𝒫 𝑥 ∈ V ↔ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | |
16 | 14, 15 | mpbi 229 | 1 ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 ∧ w3a 1084 ∀wal 1531 ∃wex 1773 ∈ wcel 2098 ∀wral 3050 ∃wrex 3059 Vcvv 3461 ⊆ wss 3944 𝒫 cpw 4604 class class class wbr 5149 ≈ cen 8961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-groth 10848 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-in 3951 df-ss 3961 df-pw 4606 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |