MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth2 Structured version   Visualization version   GIF version

Theorem axgroth2 10863
Description: Alternate version of the Tarski-Grothendieck Axiom. (Contributed by NM, 18-Mar-2007.)
Assertion
Ref Expression
axgroth2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣

Proof of Theorem axgroth2
StepHypRef Expression
1 ax-groth 10861 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
2 ssdomg 9039 . . . . . . . . . 10 (𝑦 ∈ V → (𝑧𝑦𝑧𝑦))
32elv 3483 . . . . . . . . 9 (𝑧𝑦𝑧𝑦)
43biantrurd 532 . . . . . . . 8 (𝑧𝑦 → (𝑦𝑧 ↔ (𝑧𝑦𝑦𝑧)))
5 sbthb 9133 . . . . . . . 8 ((𝑧𝑦𝑦𝑧) ↔ 𝑧𝑦)
64, 5bitrdi 287 . . . . . . 7 (𝑧𝑦 → (𝑦𝑧𝑧𝑦))
76orbi1d 916 . . . . . 6 (𝑧𝑦 → ((𝑦𝑧𝑧𝑦) ↔ (𝑧𝑦𝑧𝑦)))
87pm5.74i 271 . . . . 5 ((𝑧𝑦 → (𝑦𝑧𝑧𝑦)) ↔ (𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
98albii 1816 . . . 4 (∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦)) ↔ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
1093anbi3i 1158 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦))))
1110exbii 1845 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦))))
121, 11mpbir 231 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086  wal 1535  wex 1776  wral 3059  wrex 3068  Vcvv 3478  wss 3963   class class class wbr 5148  cen 8981  cdom 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-groth 10861
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-er 8744  df-en 8985  df-dom 8986
This theorem is referenced by:  axgroth3  10869
  Copyright terms: Public domain W3C validator