|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > axgroth2 | Structured version Visualization version GIF version | ||
| Description: Alternate version of the Tarski-Grothendieck Axiom. (Contributed by NM, 18-Mar-2007.) | 
| Ref | Expression | 
|---|---|
| axgroth2 | ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-groth 10864 | . 2 ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))) | |
| 2 | ssdomg 9041 | . . . . . . . . . 10 ⊢ (𝑦 ∈ V → (𝑧 ⊆ 𝑦 → 𝑧 ≼ 𝑦)) | |
| 3 | 2 | elv 3484 | . . . . . . . . 9 ⊢ (𝑧 ⊆ 𝑦 → 𝑧 ≼ 𝑦) | 
| 4 | 3 | biantrurd 532 | . . . . . . . 8 ⊢ (𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ↔ (𝑧 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧))) | 
| 5 | sbthb 9135 | . . . . . . . 8 ⊢ ((𝑧 ≼ 𝑦 ∧ 𝑦 ≼ 𝑧) ↔ 𝑧 ≈ 𝑦) | |
| 6 | 4, 5 | bitrdi 287 | . . . . . . 7 ⊢ (𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ↔ 𝑧 ≈ 𝑦)) | 
| 7 | 6 | orbi1d 916 | . . . . . 6 ⊢ (𝑧 ⊆ 𝑦 → ((𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦) ↔ (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))) | 
| 8 | 7 | pm5.74i 271 | . . . . 5 ⊢ ((𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)) ↔ (𝑧 ⊆ 𝑦 → (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))) | 
| 9 | 8 | albii 1818 | . . . 4 ⊢ (∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦)) ↔ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))) | 
| 10 | 9 | 3anbi3i 1159 | . . 3 ⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) ↔ (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)))) | 
| 11 | 10 | exbii 1847 | . 2 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)))) | 
| 12 | 1, 11 | mpbir 231 | 1 ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑦 ≼ 𝑧 ∨ 𝑧 ∈ 𝑦))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ∀wal 1537 ∃wex 1778 ∀wral 3060 ∃wrex 3069 Vcvv 3479 ⊆ wss 3950 class class class wbr 5142 ≈ cen 8983 ≼ cdom 8984 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-groth 10864 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-er 8746 df-en 8987 df-dom 8988 | 
| This theorem is referenced by: axgroth3 10872 | 
| Copyright terms: Public domain | W3C validator |