MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimaexg Structured version   Visualization version   GIF version

Theorem funimaexg 6603
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.) Shorten proof and avoid ax-10 2142, ax-12 2178. (Revised by SN, 19-Dec-2024.)
Assertion
Ref Expression
funimaexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem funimaexg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun6 6524 . . . 4 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
21simprbi 496 . . 3 (Fun 𝐴 → ∀𝑥∃*𝑦 𝑥𝐴𝑦)
3 dfima2 6033 . . . 4 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
4 axrep6g 5245 . . . 4 ((𝐵𝐶 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) → {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ∈ V)
53, 4eqeltrid 2832 . . 3 ((𝐵𝐶 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) → (𝐴𝐵) ∈ V)
62, 5sylan2 593 . 2 ((𝐵𝐶 ∧ Fun 𝐴) → (𝐴𝐵) ∈ V)
76ancoms 458 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wcel 2109  ∃*wmo 2531  {cab 2707  wrex 3053  Vcvv 3447   class class class wbr 5107  cima 5641  Rel wrel 5643  Fun wfun 6505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513
This theorem is referenced by:  funimaex  6605  resfunexg  7189  resfunexgALT  7926  fnexALT  7929  naddcllem  8640  naddunif  8657  wdomimag  9540  carduniima  10049  dfac12lem2  10098  ttukeylem3  10464  nnexALT  12188  seqex  13968  fbasrn  23771  elfm3  23837  bdayimaon  27605  nosupno  27615  noinfno  27630  noeta2  27696  etasslt2  27726  scutbdaybnd2lim  27729  madeval  27760  oldval  27762  negsunif  27961  bdayon  28173  fnimafnex  43429  fundcmpsurinjlem3  47401  fundcmpsurbijinjpreimafv  47408  fundcmpsurbijinj  47411  fundcmpsurinjALT  47413  grimuhgr  47887
  Copyright terms: Public domain W3C validator