| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funimaexg | Structured version Visualization version GIF version | ||
| Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.) Shorten proof and avoid ax-10 2140, ax-12 2176. (Revised by SN, 19-Dec-2024.) |
| Ref | Expression |
|---|---|
| funimaexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun6 6554 | . . . 4 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (Fun 𝐴 → ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
| 3 | dfima2 6060 | . . . 4 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} | |
| 4 | axrep6g 5270 | . . . 4 ⊢ ((𝐵 ∈ 𝐶 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) → {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} ∈ V) | |
| 5 | 3, 4 | eqeltrid 2837 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) → (𝐴 “ 𝐵) ∈ V) |
| 6 | 2, 5 | sylan2 593 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ Fun 𝐴) → (𝐴 “ 𝐵) ∈ V) |
| 7 | 6 | ancoms 458 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∈ wcel 2107 ∃*wmo 2536 {cab 2712 ∃wrex 3059 Vcvv 3463 class class class wbr 5123 “ cima 5668 Rel wrel 5670 Fun wfun 6535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-fun 6543 |
| This theorem is referenced by: funimaex 6635 resfunexg 7217 resfunexgALT 7954 fnexALT 7957 naddcllem 8696 naddunif 8713 wdomimag 9609 carduniima 10118 dfac12lem2 10167 ttukeylem3 10533 nnexALT 12250 seqex 14026 fbasrn 23839 elfm3 23905 bdayimaon 27675 nosupno 27685 noinfno 27700 noeta2 27766 etasslt2 27796 scutbdaybnd2lim 27799 madeval 27828 oldval 27830 negsunif 28024 fnimafnex 43430 fundcmpsurinjlem3 47360 fundcmpsurbijinjpreimafv 47367 fundcmpsurbijinj 47370 fundcmpsurinjALT 47372 uspgrimprop 47846 grimuhgr 47851 |
| Copyright terms: Public domain | W3C validator |