| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funimaexg | Structured version Visualization version GIF version | ||
| Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.) Shorten proof and avoid ax-10 2141, ax-12 2177. (Revised by SN, 19-Dec-2024.) |
| Ref | Expression |
|---|---|
| funimaexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun6 6544 | . . . 4 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (Fun 𝐴 → ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
| 3 | dfima2 6049 | . . . 4 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} | |
| 4 | axrep6g 5260 | . . . 4 ⊢ ((𝐵 ∈ 𝐶 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) → {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} ∈ V) | |
| 5 | 3, 4 | eqeltrid 2838 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) → (𝐴 “ 𝐵) ∈ V) |
| 6 | 2, 5 | sylan2 593 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ Fun 𝐴) → (𝐴 “ 𝐵) ∈ V) |
| 7 | 6 | ancoms 458 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∈ wcel 2108 ∃*wmo 2537 {cab 2713 ∃wrex 3060 Vcvv 3459 class class class wbr 5119 “ cima 5657 Rel wrel 5659 Fun wfun 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 |
| This theorem is referenced by: funimaex 6625 resfunexg 7207 resfunexgALT 7946 fnexALT 7949 naddcllem 8688 naddunif 8705 wdomimag 9601 carduniima 10110 dfac12lem2 10159 ttukeylem3 10525 nnexALT 12242 seqex 14021 fbasrn 23822 elfm3 23888 bdayimaon 27657 nosupno 27667 noinfno 27682 noeta2 27748 etasslt2 27778 scutbdaybnd2lim 27781 madeval 27812 oldval 27814 negsunif 28013 bdayon 28225 fnimafnex 43464 fundcmpsurinjlem3 47414 fundcmpsurbijinjpreimafv 47421 fundcmpsurbijinj 47424 fundcmpsurinjALT 47426 grimuhgr 47900 |
| Copyright terms: Public domain | W3C validator |