Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funimaexg | Structured version Visualization version GIF version |
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.) |
Ref | Expression |
---|---|
funimaexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq2 5965 | . . . . 5 ⊢ (𝑤 = 𝐵 → (𝐴 “ 𝑤) = (𝐴 “ 𝐵)) | |
2 | 1 | eleq1d 2823 | . . . 4 ⊢ (𝑤 = 𝐵 → ((𝐴 “ 𝑤) ∈ V ↔ (𝐴 “ 𝐵) ∈ V)) |
3 | 2 | imbi2d 341 | . . 3 ⊢ (𝑤 = 𝐵 → ((Fun 𝐴 → (𝐴 “ 𝑤) ∈ V) ↔ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V))) |
4 | dffun5 6447 | . . . 4 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧))) | |
5 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑧〈𝑥, 𝑦〉 ∈ 𝐴 | |
6 | 5 | axrep4 5214 | . . . . 5 ⊢ (∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴))) |
7 | isset 3445 | . . . . . 6 ⊢ ((𝐴 “ 𝑤) ∈ V ↔ ∃𝑧 𝑧 = (𝐴 “ 𝑤)) | |
8 | dfima3 5972 | . . . . . . . . 9 ⊢ (𝐴 “ 𝑤) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | |
9 | 8 | eqeq2i 2751 | . . . . . . . 8 ⊢ (𝑧 = (𝐴 “ 𝑤) ↔ 𝑧 = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)}) |
10 | abeq2 2872 | . . . . . . . 8 ⊢ (𝑧 = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} ↔ ∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴))) | |
11 | 9, 10 | bitri 274 | . . . . . . 7 ⊢ (𝑧 = (𝐴 “ 𝑤) ↔ ∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴))) |
12 | 11 | exbii 1850 | . . . . . 6 ⊢ (∃𝑧 𝑧 = (𝐴 “ 𝑤) ↔ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴))) |
13 | 7, 12 | bitri 274 | . . . . 5 ⊢ ((𝐴 “ 𝑤) ∈ V ↔ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴))) |
14 | 6, 13 | sylibr 233 | . . . 4 ⊢ (∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧) → (𝐴 “ 𝑤) ∈ V) |
15 | 4, 14 | simplbiim 505 | . . 3 ⊢ (Fun 𝐴 → (𝐴 “ 𝑤) ∈ V) |
16 | 3, 15 | vtoclg 3505 | . 2 ⊢ (𝐵 ∈ 𝐶 → (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V)) |
17 | 16 | impcom 408 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 Vcvv 3432 〈cop 4567 “ cima 5592 Rel wrel 5594 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 |
This theorem is referenced by: funimaex 6521 resfunexg 7091 resfunexgALT 7790 fnexALT 7793 wdomimag 9346 carduniima 9852 dfac12lem2 9900 ttukeylem3 10267 nnexALT 11975 seqex 13723 fbasrn 23035 elfm3 23101 naddcllem 33831 bdayimaon 33896 nosupno 33906 noinfno 33921 noeta2 33979 etasslt2 34008 scutbdaybnd2lim 34011 madeval 34036 oldval 34038 fundcmpsurinjlem3 44852 fundcmpsurbijinjpreimafv 44859 fundcmpsurbijinj 44862 fundcmpsurinjALT 44864 |
Copyright terms: Public domain | W3C validator |