MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimaexg Structured version   Visualization version   GIF version

Theorem funimaexg 6633
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.) Shorten proof and avoid ax-10 2135, ax-12 2169. (Revised by SN, 19-Dec-2024.)
Assertion
Ref Expression
funimaexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem funimaexg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun6 6555 . . . 4 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
21simprbi 495 . . 3 (Fun 𝐴 → ∀𝑥∃*𝑦 𝑥𝐴𝑦)
3 dfima2 6060 . . . 4 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
4 axrep6g 5292 . . . 4 ((𝐵𝐶 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) → {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ∈ V)
53, 4eqeltrid 2835 . . 3 ((𝐵𝐶 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) → (𝐴𝐵) ∈ V)
62, 5sylan2 591 . 2 ((𝐵𝐶 ∧ Fun 𝐴) → (𝐴𝐵) ∈ V)
76ancoms 457 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wal 1537  wcel 2104  ∃*wmo 2530  {cab 2707  wrex 3068  Vcvv 3472   class class class wbr 5147  cima 5678  Rel wrel 5680  Fun wfun 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-mo 2532  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-fun 6544
This theorem is referenced by:  funimaex  6635  resfunexg  7218  resfunexgALT  7936  fnexALT  7939  naddcllem  8677  naddunif  8694  wdomimag  9584  carduniima  10093  dfac12lem2  10141  ttukeylem3  10508  nnexALT  12218  seqex  13972  fbasrn  23608  elfm3  23674  bdayimaon  27432  nosupno  27442  noinfno  27457  noeta2  27522  etasslt2  27552  scutbdaybnd2lim  27555  madeval  27584  oldval  27586  negsunif  27768  fnimafnex  42493  fundcmpsurinjlem3  46366  fundcmpsurbijinjpreimafv  46373  fundcmpsurbijinj  46376  fundcmpsurinjALT  46378
  Copyright terms: Public domain W3C validator