![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funimaexg | Structured version Visualization version GIF version |
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.) |
Ref | Expression |
---|---|
funimaexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq2 5604 | . . . . 5 ⊢ (𝑤 = 𝐵 → (𝐴 “ 𝑤) = (𝐴 “ 𝐵)) | |
2 | 1 | eleq1d 2835 | . . . 4 ⊢ (𝑤 = 𝐵 → ((𝐴 “ 𝑤) ∈ V ↔ (𝐴 “ 𝐵) ∈ V)) |
3 | 2 | imbi2d 329 | . . 3 ⊢ (𝑤 = 𝐵 → ((Fun 𝐴 → (𝐴 “ 𝑤) ∈ V) ↔ (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V))) |
4 | dffun5 6045 | . . . . 5 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧))) | |
5 | 4 | simprbi 480 | . . . 4 ⊢ (Fun 𝐴 → ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧)) |
6 | nfv 1995 | . . . . . 6 ⊢ Ⅎ𝑧〈𝑥, 𝑦〉 ∈ 𝐴 | |
7 | 6 | axrep4 4910 | . . . . 5 ⊢ (∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴))) |
8 | isset 3359 | . . . . . 6 ⊢ ((𝐴 “ 𝑤) ∈ V ↔ ∃𝑧 𝑧 = (𝐴 “ 𝑤)) | |
9 | dfima3 5611 | . . . . . . . . 9 ⊢ (𝐴 “ 𝑤) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | |
10 | 9 | eqeq2i 2783 | . . . . . . . 8 ⊢ (𝑧 = (𝐴 “ 𝑤) ↔ 𝑧 = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)}) |
11 | abeq2 2881 | . . . . . . . 8 ⊢ (𝑧 = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} ↔ ∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴))) | |
12 | 10, 11 | bitri 264 | . . . . . . 7 ⊢ (𝑧 = (𝐴 “ 𝑤) ↔ ∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴))) |
13 | 12 | exbii 1924 | . . . . . 6 ⊢ (∃𝑧 𝑧 = (𝐴 “ 𝑤) ↔ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴))) |
14 | 8, 13 | bitri 264 | . . . . 5 ⊢ ((𝐴 “ 𝑤) ∈ V ↔ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴))) |
15 | 7, 14 | sylibr 224 | . . . 4 ⊢ (∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧) → (𝐴 “ 𝑤) ∈ V) |
16 | 5, 15 | syl 17 | . . 3 ⊢ (Fun 𝐴 → (𝐴 “ 𝑤) ∈ V) |
17 | 3, 16 | vtoclg 3418 | . 2 ⊢ (𝐵 ∈ 𝐶 → (Fun 𝐴 → (𝐴 “ 𝐵) ∈ V)) |
18 | 17 | impcom 394 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∀wal 1629 = wceq 1631 ∃wex 1852 ∈ wcel 2145 {cab 2757 Vcvv 3351 〈cop 4323 “ cima 5253 Rel wrel 5255 Fun wfun 6026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 829 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3727 df-un 3729 df-in 3731 df-ss 3738 df-nul 4065 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-br 4788 df-opab 4848 df-id 5158 df-xp 5256 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-fun 6034 |
This theorem is referenced by: funimaex 6117 resfunexg 6624 resfunexgALT 7277 fnexALT 7280 wdomimag 8649 carduniima 9120 dfac12lem2 9169 ttukeylem3 9536 nnexALT 11225 seqex 13011 fbasrn 21909 elfm3 21975 bdayimaon 32181 nosupno 32187 madeval 32273 |
Copyright terms: Public domain | W3C validator |