MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimaexg Structured version   Visualization version   GIF version

Theorem funimaexg 6520
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
Assertion
Ref Expression
funimaexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem funimaexg
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imaeq2 5965 . . . . 5 (𝑤 = 𝐵 → (𝐴𝑤) = (𝐴𝐵))
21eleq1d 2823 . . . 4 (𝑤 = 𝐵 → ((𝐴𝑤) ∈ V ↔ (𝐴𝐵) ∈ V))
32imbi2d 341 . . 3 (𝑤 = 𝐵 → ((Fun 𝐴 → (𝐴𝑤) ∈ V) ↔ (Fun 𝐴 → (𝐴𝐵) ∈ V)))
4 dffun5 6447 . . . 4 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)))
5 nfv 1917 . . . . . 6 𝑧𝑥, 𝑦⟩ ∈ 𝐴
65axrep4 5214 . . . . 5 (∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧) → ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
7 isset 3445 . . . . . 6 ((𝐴𝑤) ∈ V ↔ ∃𝑧 𝑧 = (𝐴𝑤))
8 dfima3 5972 . . . . . . . . 9 (𝐴𝑤) = {𝑦 ∣ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)}
98eqeq2i 2751 . . . . . . . 8 (𝑧 = (𝐴𝑤) ↔ 𝑧 = {𝑦 ∣ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)})
10 abeq2 2872 . . . . . . . 8 (𝑧 = {𝑦 ∣ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)} ↔ ∀𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
119, 10bitri 274 . . . . . . 7 (𝑧 = (𝐴𝑤) ↔ ∀𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
1211exbii 1850 . . . . . 6 (∃𝑧 𝑧 = (𝐴𝑤) ↔ ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
137, 12bitri 274 . . . . 5 ((𝐴𝑤) ∈ V ↔ ∃𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝑤 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
146, 13sylibr 233 . . . 4 (∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧) → (𝐴𝑤) ∈ V)
154, 14simplbiim 505 . . 3 (Fun 𝐴 → (𝐴𝑤) ∈ V)
163, 15vtoclg 3505 . 2 (𝐵𝐶 → (Fun 𝐴 → (𝐴𝐵) ∈ V))
1716impcom 408 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  {cab 2715  Vcvv 3432  cop 4567  cima 5592  Rel wrel 5594  Fun wfun 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435
This theorem is referenced by:  funimaex  6521  resfunexg  7091  resfunexgALT  7790  fnexALT  7793  wdomimag  9346  carduniima  9852  dfac12lem2  9900  ttukeylem3  10267  nnexALT  11975  seqex  13723  fbasrn  23035  elfm3  23101  naddcllem  33831  bdayimaon  33896  nosupno  33906  noinfno  33921  noeta2  33979  etasslt2  34008  scutbdaybnd2lim  34011  madeval  34036  oldval  34038  fundcmpsurinjlem3  44852  fundcmpsurbijinjpreimafv  44859  fundcmpsurbijinj  44862  fundcmpsurinjALT  44864
  Copyright terms: Public domain W3C validator