| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funimaexg | Structured version Visualization version GIF version | ||
| Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.) Shorten proof and avoid ax-10 2146, ax-12 2182. (Revised by SN, 19-Dec-2024.) |
| Ref | Expression |
|---|---|
| funimaexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun6 6497 | . . . 4 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (Fun 𝐴 → ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
| 3 | dfima2 6015 | . . . 4 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} | |
| 4 | axrep6g 5230 | . . . 4 ⊢ ((𝐵 ∈ 𝐶 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) → {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} ∈ V) | |
| 5 | 3, 4 | eqeltrid 2837 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) → (𝐴 “ 𝐵) ∈ V) |
| 6 | 2, 5 | sylan2 593 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ Fun 𝐴) → (𝐴 “ 𝐵) ∈ V) |
| 7 | 6 | ancoms 458 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∈ wcel 2113 ∃*wmo 2535 {cab 2711 ∃wrex 3057 Vcvv 3437 class class class wbr 5093 “ cima 5622 Rel wrel 5624 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6488 |
| This theorem is referenced by: funimaex 6574 resfunexg 7155 resfunexgALT 7886 fnexALT 7889 naddcllem 8597 naddunif 8614 wdomimag 9480 carduniima 9994 dfac12lem2 10043 ttukeylem3 10409 nnexALT 12134 seqex 13912 fbasrn 23800 elfm3 23866 bdayimaon 27633 nosupno 27643 noinfno 27658 noeta2 27725 etasslt2 27756 scutbdaybnd2lim 27759 madeval 27794 oldval 27796 negsunif 27998 bdayon 28210 fnimafnex 43557 fundcmpsurinjlem3 47524 fundcmpsurbijinjpreimafv 47531 fundcmpsurbijinj 47534 fundcmpsurinjALT 47536 grimuhgr 48011 |
| Copyright terms: Public domain | W3C validator |