| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funimaexg | Structured version Visualization version GIF version | ||
| Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.) Shorten proof and avoid ax-10 2142, ax-12 2178. (Revised by SN, 19-Dec-2024.) |
| Ref | Expression |
|---|---|
| funimaexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun6 6497 | . . . 4 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (Fun 𝐴 → ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
| 3 | dfima2 6017 | . . . 4 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} | |
| 4 | axrep6g 5232 | . . . 4 ⊢ ((𝐵 ∈ 𝐶 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) → {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} ∈ V) | |
| 5 | 3, 4 | eqeltrid 2832 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) → (𝐴 “ 𝐵) ∈ V) |
| 6 | 2, 5 | sylan2 593 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ Fun 𝐴) → (𝐴 “ 𝐵) ∈ V) |
| 7 | 6 | ancoms 458 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∃*wmo 2531 {cab 2707 ∃wrex 3053 Vcvv 3438 class class class wbr 5095 “ cima 5626 Rel wrel 5628 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-fun 6488 |
| This theorem is referenced by: funimaex 6574 resfunexg 7155 resfunexgALT 7890 fnexALT 7893 naddcllem 8601 naddunif 8618 wdomimag 9498 carduniima 10009 dfac12lem2 10058 ttukeylem3 10424 nnexALT 12148 seqex 13928 fbasrn 23787 elfm3 23853 bdayimaon 27621 nosupno 27631 noinfno 27646 noeta2 27713 etasslt2 27743 scutbdaybnd2lim 27746 madeval 27780 oldval 27782 negsunif 27984 bdayon 28196 fnimafnex 43413 fundcmpsurinjlem3 47385 fundcmpsurbijinjpreimafv 47392 fundcmpsurbijinj 47395 fundcmpsurinjALT 47397 grimuhgr 47872 |
| Copyright terms: Public domain | W3C validator |