MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimaexg Structured version   Visualization version   GIF version

Theorem funimaexg 6573
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.) Shorten proof and avoid ax-10 2142, ax-12 2178. (Revised by SN, 19-Dec-2024.)
Assertion
Ref Expression
funimaexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem funimaexg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun6 6497 . . . 4 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
21simprbi 496 . . 3 (Fun 𝐴 → ∀𝑥∃*𝑦 𝑥𝐴𝑦)
3 dfima2 6017 . . . 4 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
4 axrep6g 5232 . . . 4 ((𝐵𝐶 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) → {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ∈ V)
53, 4eqeltrid 2832 . . 3 ((𝐵𝐶 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) → (𝐴𝐵) ∈ V)
62, 5sylan2 593 . 2 ((𝐵𝐶 ∧ Fun 𝐴) → (𝐴𝐵) ∈ V)
76ancoms 458 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wcel 2109  ∃*wmo 2531  {cab 2707  wrex 3053  Vcvv 3438   class class class wbr 5095  cima 5626  Rel wrel 5628  Fun wfun 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-fun 6488
This theorem is referenced by:  funimaex  6574  resfunexg  7155  resfunexgALT  7890  fnexALT  7893  naddcllem  8601  naddunif  8618  wdomimag  9498  carduniima  10009  dfac12lem2  10058  ttukeylem3  10424  nnexALT  12148  seqex  13928  fbasrn  23787  elfm3  23853  bdayimaon  27621  nosupno  27631  noinfno  27646  noeta2  27713  etasslt2  27743  scutbdaybnd2lim  27746  madeval  27780  oldval  27782  negsunif  27984  bdayon  28196  fnimafnex  43413  fundcmpsurinjlem3  47385  fundcmpsurbijinjpreimafv  47392  fundcmpsurbijinj  47395  fundcmpsurinjALT  47397  grimuhgr  47872
  Copyright terms: Public domain W3C validator