| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brfinext | Structured version Visualization version GIF version | ||
| Description: The finite field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| Ref | Expression |
|---|---|
| brfinext | ⊢ (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸[:]𝐹) ∈ ℕ0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldextfld1 33660 | . . 3 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | |
| 2 | fldextfld2 33661 | . . 3 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) | |
| 3 | breq12 5094 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒/FldExt𝑓 ↔ 𝐸/FldExt𝐹)) | |
| 4 | oveq12 7355 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒[:]𝑓) = (𝐸[:]𝐹)) | |
| 5 | 4 | eleq1d 2816 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑒[:]𝑓) ∈ ℕ0 ↔ (𝐸[:]𝐹) ∈ ℕ0)) |
| 6 | 3, 5 | anbi12d 632 | . . . 4 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0) ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0))) |
| 7 | df-finext 33656 | . . . 4 ⊢ /FinExt = {〈𝑒, 𝑓〉 ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0)} | |
| 8 | 6, 7 | brabga 5472 | . . 3 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0))) |
| 9 | 1, 2, 8 | syl2anc 584 | . 2 ⊢ (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0))) |
| 10 | 9 | bianabs 541 | 1 ⊢ (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸[:]𝐹) ∈ ℕ0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℕ0cn0 12381 Fieldcfield 20645 /FldExtcfldext 33651 /FinExtcfinext 33652 [:]cextdg 33653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-iota 6437 df-fv 6489 df-ov 7349 df-fldext 33654 df-finext 33656 |
| This theorem is referenced by: finexttrb 33678 finextalg 33711 |
| Copyright terms: Public domain | W3C validator |