Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfinext Structured version   Visualization version   GIF version

Theorem brfinext 31728
Description: The finite field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
brfinext (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸[:]𝐹) ∈ ℕ0))

Proof of Theorem brfinext
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextfld1 31724 . . 3 (𝐸/FldExt𝐹𝐸 ∈ Field)
2 fldextfld2 31725 . . 3 (𝐸/FldExt𝐹𝐹 ∈ Field)
3 breq12 5079 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒/FldExt𝑓𝐸/FldExt𝐹))
4 oveq12 7284 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒[:]𝑓) = (𝐸[:]𝐹))
54eleq1d 2823 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒[:]𝑓) ∈ ℕ0 ↔ (𝐸[:]𝐹) ∈ ℕ0))
63, 5anbi12d 631 . . . 4 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0) ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0)))
7 df-finext 31719 . . . 4 /FinExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0)}
86, 7brabga 5447 . . 3 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0)))
91, 2, 8syl2anc 584 . 2 (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0)))
109bianabs 542 1 (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸[:]𝐹) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  (class class class)co 7275  0cn0 12233  Fieldcfield 19992  /FldExtcfldext 31713  /FinExtcfinext 31714  [:]cextdg 31716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-iota 6391  df-fv 6441  df-ov 7278  df-fldext 31717  df-finext 31719
This theorem is referenced by:  finexttrb  31737
  Copyright terms: Public domain W3C validator