Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfinext Structured version   Visualization version   GIF version

Theorem brfinext 33666
Description: The finite field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
brfinext (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸[:]𝐹) ∈ ℕ0))

Proof of Theorem brfinext
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextfld1 33662 . . 3 (𝐸/FldExt𝐹𝐸 ∈ Field)
2 fldextfld2 33663 . . 3 (𝐸/FldExt𝐹𝐹 ∈ Field)
3 breq12 5171 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒/FldExt𝑓𝐸/FldExt𝐹))
4 oveq12 7457 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒[:]𝑓) = (𝐸[:]𝐹))
54eleq1d 2829 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒[:]𝑓) ∈ ℕ0 ↔ (𝐸[:]𝐹) ∈ ℕ0))
63, 5anbi12d 631 . . . 4 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0) ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0)))
7 df-finext 33657 . . . 4 /FinExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0)}
86, 7brabga 5553 . . 3 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0)))
91, 2, 8syl2anc 583 . 2 (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0)))
109bianabs 541 1 (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸[:]𝐹) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7448  0cn0 12553  Fieldcfield 20752  /FldExtcfldext 33651  /FinExtcfinext 33652  [:]cextdg 33654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-iota 6525  df-fv 6581  df-ov 7451  df-fldext 33655  df-finext 33657
This theorem is referenced by:  finexttrb  33675
  Copyright terms: Public domain W3C validator