Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfinext Structured version   Visualization version   GIF version

Theorem brfinext 33694
Description: The finite field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
brfinext (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸[:]𝐹) ∈ ℕ0))

Proof of Theorem brfinext
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldextfld1 33690 . . 3 (𝐸/FldExt𝐹𝐸 ∈ Field)
2 fldextfld2 33691 . . 3 (𝐸/FldExt𝐹𝐹 ∈ Field)
3 breq12 5154 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒/FldExt𝑓𝐸/FldExt𝐹))
4 oveq12 7444 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒[:]𝑓) = (𝐸[:]𝐹))
54eleq1d 2825 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒[:]𝑓) ∈ ℕ0 ↔ (𝐸[:]𝐹) ∈ ℕ0))
63, 5anbi12d 632 . . . 4 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0) ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0)))
7 df-finext 33685 . . . 4 /FinExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0)}
86, 7brabga 5545 . . 3 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0)))
91, 2, 8syl2anc 584 . 2 (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0)))
109bianabs 541 1 (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸[:]𝐹) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1538  wcel 2107   class class class wbr 5149  (class class class)co 7435  0cn0 12530  Fieldcfield 20753  /FldExtcfldext 33679  /FinExtcfinext 33680  [:]cextdg 33682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-xp 5696  df-iota 6519  df-fv 6574  df-ov 7438  df-fldext 33683  df-finext 33685
This theorem is referenced by:  finexttrb  33703
  Copyright terms: Public domain W3C validator