| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brfinext | Structured version Visualization version GIF version | ||
| Description: The finite field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| Ref | Expression |
|---|---|
| brfinext | ⊢ (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸[:]𝐹) ∈ ℕ0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldextfld1 33694 | . . 3 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | |
| 2 | fldextfld2 33695 | . . 3 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) | |
| 3 | breq12 5129 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒/FldExt𝑓 ↔ 𝐸/FldExt𝐹)) | |
| 4 | oveq12 7419 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (𝑒[:]𝑓) = (𝐸[:]𝐹)) | |
| 5 | 4 | eleq1d 2820 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑒[:]𝑓) ∈ ℕ0 ↔ (𝐸[:]𝐹) ∈ ℕ0)) |
| 6 | 3, 5 | anbi12d 632 | . . . 4 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0) ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0))) |
| 7 | df-finext 33689 | . . . 4 ⊢ /FinExt = {〈𝑒, 𝑓〉 ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0)} | |
| 8 | 6, 7 | brabga 5514 | . . 3 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0))) |
| 9 | 1, 2, 8 | syl2anc 584 | . 2 ⊢ (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) ∈ ℕ0))) |
| 10 | 9 | bianabs 541 | 1 ⊢ (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸[:]𝐹) ∈ ℕ0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 ℕ0cn0 12506 Fieldcfield 20695 /FldExtcfldext 33683 /FinExtcfinext 33684 [:]cextdg 33686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-iota 6489 df-fv 6544 df-ov 7413 df-fldext 33687 df-finext 33689 |
| This theorem is referenced by: finexttrb 33711 |
| Copyright terms: Public domain | W3C validator |