Step | Hyp | Ref
| Expression |
1 | | eleq1 2826 |
. . . . 5
⊢ (𝑦 = 𝐴 → (𝑦 ∈ Cℋ
↔ 𝐴 ∈
Cℋ )) |
2 | 1 | anbi1d 630 |
. . . 4
⊢ (𝑦 = 𝐴 → ((𝑦 ∈ Cℋ
∧ 𝑧 ∈
Cℋ ) ↔ (𝐴 ∈ Cℋ
∧ 𝑧 ∈
Cℋ ))) |
3 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑥 ∨ℋ 𝑦) = (𝑥 ∨ℋ 𝐴)) |
4 | 3 | ineq1d 4145 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → ((𝑥 ∨ℋ 𝑦) ∩ 𝑧) = ((𝑥 ∨ℋ 𝐴) ∩ 𝑧)) |
5 | | ineq1 4139 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑦 ∩ 𝑧) = (𝐴 ∩ 𝑧)) |
6 | 5 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑥 ∨ℋ (𝑦 ∩ 𝑧)) = (𝑥 ∨ℋ (𝐴 ∩ 𝑧))) |
7 | 4, 6 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (((𝑥 ∨ℋ 𝑦) ∩ 𝑧) = (𝑥 ∨ℋ (𝑦 ∩ 𝑧)) ↔ ((𝑥 ∨ℋ 𝐴) ∩ 𝑧) = (𝑥 ∨ℋ (𝐴 ∩ 𝑧)))) |
8 | 7 | imbi2d 341 |
. . . . 5
⊢ (𝑦 = 𝐴 → ((𝑥 ⊆ 𝑧 → ((𝑥 ∨ℋ 𝑦) ∩ 𝑧) = (𝑥 ∨ℋ (𝑦 ∩ 𝑧))) ↔ (𝑥 ⊆ 𝑧 → ((𝑥 ∨ℋ 𝐴) ∩ 𝑧) = (𝑥 ∨ℋ (𝐴 ∩ 𝑧))))) |
9 | 8 | ralbidv 3112 |
. . . 4
⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝑧 → ((𝑥 ∨ℋ 𝑦) ∩ 𝑧) = (𝑥 ∨ℋ (𝑦 ∩ 𝑧))) ↔ ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝑧 → ((𝑥 ∨ℋ 𝐴) ∩ 𝑧) = (𝑥 ∨ℋ (𝐴 ∩ 𝑧))))) |
10 | 2, 9 | anbi12d 631 |
. . 3
⊢ (𝑦 = 𝐴 → (((𝑦 ∈ Cℋ
∧ 𝑧 ∈
Cℋ ) ∧ ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝑧 → ((𝑥 ∨ℋ 𝑦) ∩ 𝑧) = (𝑥 ∨ℋ (𝑦 ∩ 𝑧)))) ↔ ((𝐴 ∈ Cℋ
∧ 𝑧 ∈
Cℋ ) ∧ ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝑧 → ((𝑥 ∨ℋ 𝐴) ∩ 𝑧) = (𝑥 ∨ℋ (𝐴 ∩ 𝑧)))))) |
11 | | eleq1 2826 |
. . . . 5
⊢ (𝑧 = 𝐵 → (𝑧 ∈ Cℋ
↔ 𝐵 ∈
Cℋ )) |
12 | 11 | anbi2d 629 |
. . . 4
⊢ (𝑧 = 𝐵 → ((𝐴 ∈ Cℋ
∧ 𝑧 ∈
Cℋ ) ↔ (𝐴 ∈ Cℋ
∧ 𝐵 ∈
Cℋ ))) |
13 | | sseq2 3947 |
. . . . . 6
⊢ (𝑧 = 𝐵 → (𝑥 ⊆ 𝑧 ↔ 𝑥 ⊆ 𝐵)) |
14 | | ineq2 4140 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝑧) = ((𝑥 ∨ℋ 𝐴) ∩ 𝐵)) |
15 | | ineq2 4140 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → (𝐴 ∩ 𝑧) = (𝐴 ∩ 𝐵)) |
16 | 15 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → (𝑥 ∨ℋ (𝐴 ∩ 𝑧)) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))) |
17 | 14, 16 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑧 = 𝐵 → (((𝑥 ∨ℋ 𝐴) ∩ 𝑧) = (𝑥 ∨ℋ (𝐴 ∩ 𝑧)) ↔ ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) |
18 | 13, 17 | imbi12d 345 |
. . . . 5
⊢ (𝑧 = 𝐵 → ((𝑥 ⊆ 𝑧 → ((𝑥 ∨ℋ 𝐴) ∩ 𝑧) = (𝑥 ∨ℋ (𝐴 ∩ 𝑧))) ↔ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
19 | 18 | ralbidv 3112 |
. . . 4
⊢ (𝑧 = 𝐵 → (∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝑧 → ((𝑥 ∨ℋ 𝐴) ∩ 𝑧) = (𝑥 ∨ℋ (𝐴 ∩ 𝑧))) ↔ ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |
20 | 12, 19 | anbi12d 631 |
. . 3
⊢ (𝑧 = 𝐵 → (((𝐴 ∈ Cℋ
∧ 𝑧 ∈
Cℋ ) ∧ ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝑧 → ((𝑥 ∨ℋ 𝐴) ∩ 𝑧) = (𝑥 ∨ℋ (𝐴 ∩ 𝑧)))) ↔ ((𝐴 ∈ Cℋ
∧ 𝐵 ∈
Cℋ ) ∧ ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))))) |
21 | | df-md 30642 |
. . 3
⊢
𝑀ℋ = {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ Cℋ
∧ 𝑧 ∈
Cℋ ) ∧ ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝑧 → ((𝑥 ∨ℋ 𝑦) ∩ 𝑧) = (𝑥 ∨ℋ (𝑦 ∩ 𝑧))))} |
22 | 10, 20, 21 | brabg 5452 |
. 2
⊢ ((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
→ (𝐴
𝑀ℋ 𝐵 ↔ ((𝐴 ∈ Cℋ
∧ 𝐵 ∈
Cℋ ) ∧ ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))))) |
23 | 22 | bianabs 542 |
1
⊢ ((𝐴 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
→ (𝐴
𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ
(𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) |