MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovg Structured version   Visualization version   GIF version

Theorem ovg 7302
Description: The value of an operation class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
ovg.1 (𝑥 = 𝐴 → (𝜑𝜓))
ovg.2 (𝑦 = 𝐵 → (𝜓𝜒))
ovg.3 (𝑧 = 𝐶 → (𝜒𝜃))
ovg.4 ((𝜏 ∧ (𝑥𝑅𝑦𝑆)) → ∃!𝑧𝜑)
ovg.5 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
Assertion
Ref Expression
ovg ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → ((𝐴𝐹𝐵) = 𝐶𝜃))
Distinct variable groups:   𝜓,𝑥   𝜒,𝑥,𝑦   𝜃,𝑥,𝑦,𝑧   𝜏,𝑥,𝑦   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑦,𝑧)   𝜒(𝑧)   𝜏(𝑧)   𝐷(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ovg
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7148 . . . . 5 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 ovg.5 . . . . . 6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
32fveq1i 6664 . . . . 5 (𝐹‘⟨𝐴, 𝐵⟩) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩)
41, 3eqtri 2841 . . . 4 (𝐴𝐹𝐵) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩)
54eqeq1i 2823 . . 3 ((𝐴𝐹𝐵) = 𝐶 ↔ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶)
6 eqeq2 2830 . . . . . . . . . 10 (𝑐 = 𝐶 → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶))
7 opeq2 4796 . . . . . . . . . . 11 (𝑐 = 𝐶 → ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
87eleq1d 2894 . . . . . . . . . 10 (𝑐 = 𝐶 → (⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
96, 8bibi12d 347 . . . . . . . . 9 (𝑐 = 𝐶 → ((({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}) ↔ (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})))
109imbi2d 342 . . . . . . . 8 (𝑐 = 𝐶 → (((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})) ↔ ((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))))
11 ovg.4 . . . . . . . . . . . 12 ((𝜏 ∧ (𝑥𝑅𝑦𝑆)) → ∃!𝑧𝜑)
1211ex 413 . . . . . . . . . . 11 (𝜏 → ((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑))
1312alrimivv 1920 . . . . . . . . . 10 (𝜏 → ∀𝑥𝑦((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑))
14 fnoprabg 7264 . . . . . . . . . 10 (∀𝑥𝑦((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
1513, 14syl 17 . . . . . . . . 9 (𝜏 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
16 eleq1 2897 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑥𝑅𝐴𝑅))
1716anbi1d 629 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((𝑥𝑅𝑦𝑆) ↔ (𝐴𝑅𝑦𝑆)))
18 eleq1 2897 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝑦𝑆𝐵𝑆))
1918anbi2d 628 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((𝐴𝑅𝑦𝑆) ↔ (𝐴𝑅𝐵𝑆)))
2017, 19opelopabg 5416 . . . . . . . . . 10 ((𝐴𝑅𝐵𝑆) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ↔ (𝐴𝑅𝐵𝑆)))
2120ibir 269 . . . . . . . . 9 ((𝐴𝑅𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
22 fnopfvb 6712 . . . . . . . . 9 (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ∧ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)}) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
2315, 21, 22syl2an 595 . . . . . . . 8 ((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
2410, 23vtoclg 3565 . . . . . . 7 (𝐶𝐷 → ((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})))
2524com12 32 . . . . . 6 ((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (𝐶𝐷 → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})))
2625exp32 421 . . . . 5 (𝜏 → (𝐴𝑅 → (𝐵𝑆 → (𝐶𝐷 → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})))))
27263imp2 1341 . . . 4 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
28 ovg.1 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
2917, 28anbi12d 630 . . . . . 6 (𝑥 = 𝐴 → (((𝑥𝑅𝑦𝑆) ∧ 𝜑) ↔ ((𝐴𝑅𝑦𝑆) ∧ 𝜓)))
30 ovg.2 . . . . . . 7 (𝑦 = 𝐵 → (𝜓𝜒))
3119, 30anbi12d 630 . . . . . 6 (𝑦 = 𝐵 → (((𝐴𝑅𝑦𝑆) ∧ 𝜓) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜒)))
32 ovg.3 . . . . . . 7 (𝑧 = 𝐶 → (𝜒𝜃))
3332anbi2d 628 . . . . . 6 (𝑧 = 𝐶 → (((𝐴𝑅𝐵𝑆) ∧ 𝜒) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
3429, 31, 33eloprabg 7251 . . . . 5 ((𝐴𝑅𝐵𝑆𝐶𝐷) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
3534adantl 482 . . . 4 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
3627, 35bitrd 280 . . 3 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
375, 36syl5bb 284 . 2 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → ((𝐴𝐹𝐵) = 𝐶 ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
38 biidd 263 . . . . 5 ((𝐴𝑅𝐵𝑆) → (((𝐴𝑅𝐵𝑆) ∧ 𝜃) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
3938bianabs 542 . . . 4 ((𝐴𝑅𝐵𝑆) → (((𝐴𝑅𝐵𝑆) ∧ 𝜃) ↔ 𝜃))
40393adant3 1124 . . 3 ((𝐴𝑅𝐵𝑆𝐶𝐷) → (((𝐴𝑅𝐵𝑆) ∧ 𝜃) ↔ 𝜃))
4140adantl 482 . 2 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → (((𝐴𝑅𝐵𝑆) ∧ 𝜃) ↔ 𝜃))
4237, 41bitrd 280 1 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → ((𝐴𝐹𝐵) = 𝐶𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079  wal 1526   = wceq 1528  wcel 2105  ∃!weu 2646  cop 4563  {copab 5119   Fn wfn 6343  cfv 6348  (class class class)co 7145  {coprab 7146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fn 6351  df-fv 6356  df-ov 7148  df-oprab 7149
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator