MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem5 Structured version   Visualization version   GIF version

Theorem axcontlem5 27980
Description: Lemma for axcont 27988. Compute the value of 𝐹. (Contributed by Scott Fenton, 18-Jun-2013.)
Hypotheses
Ref Expression
axcontlem5.1 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
axcontlem5.2 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
Assertion
Ref Expression
axcontlem5 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
Distinct variable groups:   𝑡,𝐷,𝑥   𝑖,𝑝,𝑡,𝑥,𝑁   𝑃,𝑖,𝑡,𝑥   𝑥,𝑇,𝑖,𝑡   𝑈,𝑖,𝑝,𝑡,𝑥   𝑖,𝑍,𝑝,𝑡,𝑥
Allowed substitution hints:   𝐷(𝑖,𝑝)   𝑃(𝑝)   𝑇(𝑝)   𝐹(𝑥,𝑡,𝑖,𝑝)

Proof of Theorem axcontlem5
StepHypRef Expression
1 axcontlem5.1 . . . . . 6 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
2 axcontlem5.2 . . . . . 6 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
31, 2axcontlem2 27977 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹:𝐷1-1-onto→(0[,)+∞))
4 f1of 6789 . . . . 5 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷⟶(0[,)+∞))
53, 4syl 17 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹:𝐷⟶(0[,)+∞))
65ffvelcdmda 7040 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → (𝐹𝑃) ∈ (0[,)+∞))
7 eleq1 2820 . . 3 ((𝐹𝑃) = 𝑇 → ((𝐹𝑃) ∈ (0[,)+∞) ↔ 𝑇 ∈ (0[,)+∞)))
86, 7syl5ibcom 244 . 2 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = 𝑇𝑇 ∈ (0[,)+∞)))
9 simpl 483 . . 3 ((𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) → 𝑇 ∈ (0[,)+∞))
109a1i 11 . 2 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) → 𝑇 ∈ (0[,)+∞)))
11 f1ofn 6790 . . . . . . 7 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹 Fn 𝐷)
123, 11syl 17 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹 Fn 𝐷)
13 fnbrfvb 6900 . . . . . 6 ((𝐹 Fn 𝐷𝑃𝐷) → ((𝐹𝑃) = 𝑇𝑃𝐹𝑇))
1412, 13sylan 580 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = 𝑇𝑃𝐹𝑇))
15143adant3 1132 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷𝑇 ∈ (0[,)+∞)) → ((𝐹𝑃) = 𝑇𝑃𝐹𝑇))
16 eleq1 2820 . . . . . . . 8 (𝑥 = 𝑃 → (𝑥𝐷𝑃𝐷))
17 fveq1 6846 . . . . . . . . . . 11 (𝑥 = 𝑃 → (𝑥𝑖) = (𝑃𝑖))
1817eqeq1d 2733 . . . . . . . . . 10 (𝑥 = 𝑃 → ((𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ (𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))
1918ralbidv 3170 . . . . . . . . 9 (𝑥 = 𝑃 → (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))
2019anbi2d 629 . . . . . . . 8 (𝑥 = 𝑃 → ((𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))) ↔ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))))))
2116, 20anbi12d 631 . . . . . . 7 (𝑥 = 𝑃 → ((𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))))) ↔ (𝑃𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))))
22 eleq1 2820 . . . . . . . . . 10 (𝑡 = 𝑇 → (𝑡 ∈ (0[,)+∞) ↔ 𝑇 ∈ (0[,)+∞)))
23 oveq2 7370 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (1 − 𝑡) = (1 − 𝑇))
2423oveq1d 7377 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((1 − 𝑡) · (𝑍𝑖)) = ((1 − 𝑇) · (𝑍𝑖)))
25 oveq1 7369 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (𝑡 · (𝑈𝑖)) = (𝑇 · (𝑈𝑖)))
2624, 25oveq12d 7380 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))
2726eqeq2d 2742 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ (𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))
2827ralbidv 3170 . . . . . . . . . 10 (𝑡 = 𝑇 → (∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))
2922, 28anbi12d 631 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))) ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
3029anbi2d 629 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑃𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))))) ↔ (𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))))
31 anass 469 . . . . . . . . . . 11 (((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ 𝑇 ∈ (0[,)+∞)) ↔ (𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ 𝑇 ∈ (0[,)+∞))))
32 anidm 565 . . . . . . . . . . . 12 ((𝑇 ∈ (0[,)+∞) ∧ 𝑇 ∈ (0[,)+∞)) ↔ 𝑇 ∈ (0[,)+∞))
3332anbi2i 623 . . . . . . . . . . 11 ((𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ 𝑇 ∈ (0[,)+∞))) ↔ (𝑃𝐷𝑇 ∈ (0[,)+∞)))
3431, 33bitr2i 275 . . . . . . . . . 10 ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ 𝑇 ∈ (0[,)+∞)))
3534anbi1i 624 . . . . . . . . 9 (((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) ↔ (((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ 𝑇 ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))
36 anass 469 . . . . . . . . 9 (((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) ↔ (𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
37 anass 469 . . . . . . . . 9 ((((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ 𝑇 ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
3835, 36, 373bitr3i 300 . . . . . . . 8 ((𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))) ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
3930, 38bitrdi 286 . . . . . . 7 (𝑡 = 𝑇 → ((𝑃𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))))) ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))))
4021, 39, 2brabg 5501 . . . . . 6 ((𝑃𝐷𝑇 ∈ (0[,)+∞)) → (𝑃𝐹𝑇 ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))))
4140bianabs 542 . . . . 5 ((𝑃𝐷𝑇 ∈ (0[,)+∞)) → (𝑃𝐹𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
42413adant1 1130 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷𝑇 ∈ (0[,)+∞)) → (𝑃𝐹𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
4315, 42bitrd 278 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷𝑇 ∈ (0[,)+∞)) → ((𝐹𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
44433expia 1121 . 2 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → (𝑇 ∈ (0[,)+∞) → ((𝐹𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))))
458, 10, 44pm5.21ndd 380 1 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wral 3060  {crab 3405  cop 4597   class class class wbr 5110  {copab 5172   Fn wfn 6496  wf 6497  1-1-ontowf1o 6500  cfv 6501  (class class class)co 7362  0cc0 11060  1c1 11061   + caddc 11063   · cmul 11065  +∞cpnf 11195  cmin 11394  cn 12162  [,)cico 13276  ...cfz 13434  𝔼cee 27900   Btwn cbtwn 27901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-z 12509  df-uz 12773  df-ico 13280  df-icc 13281  df-fz 13435  df-ee 27903  df-btwn 27904
This theorem is referenced by:  axcontlem6  27981
  Copyright terms: Public domain W3C validator