MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem5 Structured version   Visualization version   GIF version

Theorem axcontlem5 27239
Description: Lemma for axcont 27247. Compute the value of 𝐹. (Contributed by Scott Fenton, 18-Jun-2013.)
Hypotheses
Ref Expression
axcontlem5.1 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
axcontlem5.2 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
Assertion
Ref Expression
axcontlem5 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
Distinct variable groups:   𝑡,𝐷,𝑥   𝑖,𝑝,𝑡,𝑥,𝑁   𝑃,𝑖,𝑡,𝑥   𝑥,𝑇,𝑖,𝑡   𝑈,𝑖,𝑝,𝑡,𝑥   𝑖,𝑍,𝑝,𝑡,𝑥
Allowed substitution hints:   𝐷(𝑖,𝑝)   𝑃(𝑝)   𝑇(𝑝)   𝐹(𝑥,𝑡,𝑖,𝑝)

Proof of Theorem axcontlem5
StepHypRef Expression
1 axcontlem5.1 . . . . . 6 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
2 axcontlem5.2 . . . . . 6 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
31, 2axcontlem2 27236 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹:𝐷1-1-onto→(0[,)+∞))
4 f1of 6700 . . . . 5 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷⟶(0[,)+∞))
53, 4syl 17 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹:𝐷⟶(0[,)+∞))
65ffvelrnda 6943 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → (𝐹𝑃) ∈ (0[,)+∞))
7 eleq1 2826 . . 3 ((𝐹𝑃) = 𝑇 → ((𝐹𝑃) ∈ (0[,)+∞) ↔ 𝑇 ∈ (0[,)+∞)))
86, 7syl5ibcom 244 . 2 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = 𝑇𝑇 ∈ (0[,)+∞)))
9 simpl 482 . . 3 ((𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) → 𝑇 ∈ (0[,)+∞))
109a1i 11 . 2 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) → 𝑇 ∈ (0[,)+∞)))
11 f1ofn 6701 . . . . . . 7 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹 Fn 𝐷)
123, 11syl 17 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹 Fn 𝐷)
13 fnbrfvb 6804 . . . . . 6 ((𝐹 Fn 𝐷𝑃𝐷) → ((𝐹𝑃) = 𝑇𝑃𝐹𝑇))
1412, 13sylan 579 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = 𝑇𝑃𝐹𝑇))
15143adant3 1130 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷𝑇 ∈ (0[,)+∞)) → ((𝐹𝑃) = 𝑇𝑃𝐹𝑇))
16 eleq1 2826 . . . . . . . 8 (𝑥 = 𝑃 → (𝑥𝐷𝑃𝐷))
17 fveq1 6755 . . . . . . . . . . 11 (𝑥 = 𝑃 → (𝑥𝑖) = (𝑃𝑖))
1817eqeq1d 2740 . . . . . . . . . 10 (𝑥 = 𝑃 → ((𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ (𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))
1918ralbidv 3120 . . . . . . . . 9 (𝑥 = 𝑃 → (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))
2019anbi2d 628 . . . . . . . 8 (𝑥 = 𝑃 → ((𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))) ↔ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))))))
2116, 20anbi12d 630 . . . . . . 7 (𝑥 = 𝑃 → ((𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))))) ↔ (𝑃𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))))
22 eleq1 2826 . . . . . . . . . 10 (𝑡 = 𝑇 → (𝑡 ∈ (0[,)+∞) ↔ 𝑇 ∈ (0[,)+∞)))
23 oveq2 7263 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (1 − 𝑡) = (1 − 𝑇))
2423oveq1d 7270 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((1 − 𝑡) · (𝑍𝑖)) = ((1 − 𝑇) · (𝑍𝑖)))
25 oveq1 7262 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (𝑡 · (𝑈𝑖)) = (𝑇 · (𝑈𝑖)))
2624, 25oveq12d 7273 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))
2726eqeq2d 2749 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ (𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))
2827ralbidv 3120 . . . . . . . . . 10 (𝑡 = 𝑇 → (∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))
2922, 28anbi12d 630 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))) ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
3029anbi2d 628 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑃𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))))) ↔ (𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))))
31 anass 468 . . . . . . . . . . 11 (((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ 𝑇 ∈ (0[,)+∞)) ↔ (𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ 𝑇 ∈ (0[,)+∞))))
32 anidm 564 . . . . . . . . . . . 12 ((𝑇 ∈ (0[,)+∞) ∧ 𝑇 ∈ (0[,)+∞)) ↔ 𝑇 ∈ (0[,)+∞))
3332anbi2i 622 . . . . . . . . . . 11 ((𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ 𝑇 ∈ (0[,)+∞))) ↔ (𝑃𝐷𝑇 ∈ (0[,)+∞)))
3431, 33bitr2i 275 . . . . . . . . . 10 ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ 𝑇 ∈ (0[,)+∞)))
3534anbi1i 623 . . . . . . . . 9 (((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) ↔ (((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ 𝑇 ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))
36 anass 468 . . . . . . . . 9 (((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) ↔ (𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
37 anass 468 . . . . . . . . 9 ((((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ 𝑇 ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
3835, 36, 373bitr3i 300 . . . . . . . 8 ((𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))) ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
3930, 38bitrdi 286 . . . . . . 7 (𝑡 = 𝑇 → ((𝑃𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))))) ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))))
4021, 39, 2brabg 5445 . . . . . 6 ((𝑃𝐷𝑇 ∈ (0[,)+∞)) → (𝑃𝐹𝑇 ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))))
4140bianabs 541 . . . . 5 ((𝑃𝐷𝑇 ∈ (0[,)+∞)) → (𝑃𝐹𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
42413adant1 1128 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷𝑇 ∈ (0[,)+∞)) → (𝑃𝐹𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
4315, 42bitrd 278 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷𝑇 ∈ (0[,)+∞)) → ((𝐹𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
44433expia 1119 . 2 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → (𝑇 ∈ (0[,)+∞) → ((𝐹𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))))
458, 10, 44pm5.21ndd 380 1 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  cop 4564   class class class wbr 5070  {copab 5132   Fn wfn 6413  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  cmin 11135  cn 11903  [,)cico 13010  ...cfz 13168  𝔼cee 27159   Btwn cbtwn 27160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-z 12250  df-uz 12512  df-ico 13014  df-icc 13015  df-fz 13169  df-ee 27162  df-btwn 27163
This theorem is referenced by:  axcontlem6  27240
  Copyright terms: Public domain W3C validator