MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem5 Structured version   Visualization version   GIF version

Theorem axcontlem5 26762
Description: Lemma for axcont 26770. Compute the value of 𝐹. (Contributed by Scott Fenton, 18-Jun-2013.)
Hypotheses
Ref Expression
axcontlem5.1 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
axcontlem5.2 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
Assertion
Ref Expression
axcontlem5 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
Distinct variable groups:   𝑡,𝐷,𝑥   𝑖,𝑝,𝑡,𝑥,𝑁   𝑃,𝑖,𝑡,𝑥   𝑥,𝑇,𝑖,𝑡   𝑈,𝑖,𝑝,𝑡,𝑥   𝑖,𝑍,𝑝,𝑡,𝑥
Allowed substitution hints:   𝐷(𝑖,𝑝)   𝑃(𝑝)   𝑇(𝑝)   𝐹(𝑥,𝑡,𝑖,𝑝)

Proof of Theorem axcontlem5
StepHypRef Expression
1 axcontlem5.1 . . . . . 6 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
2 axcontlem5.2 . . . . . 6 𝐹 = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))}
31, 2axcontlem2 26759 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹:𝐷1-1-onto→(0[,)+∞))
4 f1of 6590 . . . . 5 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹:𝐷⟶(0[,)+∞))
53, 4syl 17 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹:𝐷⟶(0[,)+∞))
65ffvelrnda 6828 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → (𝐹𝑃) ∈ (0[,)+∞))
7 eleq1 2877 . . 3 ((𝐹𝑃) = 𝑇 → ((𝐹𝑃) ∈ (0[,)+∞) ↔ 𝑇 ∈ (0[,)+∞)))
86, 7syl5ibcom 248 . 2 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = 𝑇𝑇 ∈ (0[,)+∞)))
9 simpl 486 . . 3 ((𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) → 𝑇 ∈ (0[,)+∞))
109a1i 11 . 2 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) → 𝑇 ∈ (0[,)+∞)))
11 f1ofn 6591 . . . . . . 7 (𝐹:𝐷1-1-onto→(0[,)+∞) → 𝐹 Fn 𝐷)
123, 11syl 17 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) → 𝐹 Fn 𝐷)
13 fnbrfvb 6693 . . . . . 6 ((𝐹 Fn 𝐷𝑃𝐷) → ((𝐹𝑃) = 𝑇𝑃𝐹𝑇))
1412, 13sylan 583 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = 𝑇𝑃𝐹𝑇))
15143adant3 1129 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷𝑇 ∈ (0[,)+∞)) → ((𝐹𝑃) = 𝑇𝑃𝐹𝑇))
16 eleq1 2877 . . . . . . . 8 (𝑥 = 𝑃 → (𝑥𝐷𝑃𝐷))
17 fveq1 6644 . . . . . . . . . . 11 (𝑥 = 𝑃 → (𝑥𝑖) = (𝑃𝑖))
1817eqeq1d 2800 . . . . . . . . . 10 (𝑥 = 𝑃 → ((𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ (𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))
1918ralbidv 3162 . . . . . . . . 9 (𝑥 = 𝑃 → (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))
2019anbi2d 631 . . . . . . . 8 (𝑥 = 𝑃 → ((𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))) ↔ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))))))
2116, 20anbi12d 633 . . . . . . 7 (𝑥 = 𝑃 → ((𝑥𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))))) ↔ (𝑃𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))))))
22 eleq1 2877 . . . . . . . . . 10 (𝑡 = 𝑇 → (𝑡 ∈ (0[,)+∞) ↔ 𝑇 ∈ (0[,)+∞)))
23 oveq2 7143 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (1 − 𝑡) = (1 − 𝑇))
2423oveq1d 7150 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((1 − 𝑡) · (𝑍𝑖)) = ((1 − 𝑇) · (𝑍𝑖)))
25 oveq1 7142 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (𝑡 · (𝑈𝑖)) = (𝑇 · (𝑈𝑖)))
2624, 25oveq12d 7153 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))
2726eqeq2d 2809 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ (𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))
2827ralbidv 3162 . . . . . . . . . 10 (𝑡 = 𝑇 → (∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))
2922, 28anbi12d 633 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖)))) ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
3029anbi2d 631 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑃𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))))) ↔ (𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))))
31 anass 472 . . . . . . . . . . 11 (((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ 𝑇 ∈ (0[,)+∞)) ↔ (𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ 𝑇 ∈ (0[,)+∞))))
32 anidm 568 . . . . . . . . . . . 12 ((𝑇 ∈ (0[,)+∞) ∧ 𝑇 ∈ (0[,)+∞)) ↔ 𝑇 ∈ (0[,)+∞))
3332anbi2i 625 . . . . . . . . . . 11 ((𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ 𝑇 ∈ (0[,)+∞))) ↔ (𝑃𝐷𝑇 ∈ (0[,)+∞)))
3431, 33bitr2i 279 . . . . . . . . . 10 ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ 𝑇 ∈ (0[,)+∞)))
3534anbi1i 626 . . . . . . . . 9 (((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) ↔ (((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ 𝑇 ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))
36 anass 472 . . . . . . . . 9 (((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) ↔ (𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
37 anass 472 . . . . . . . . 9 ((((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ 𝑇 ∈ (0[,)+∞)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))) ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
3835, 36, 373bitr3i 304 . . . . . . . 8 ((𝑃𝐷 ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))) ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
3930, 38syl6bb 290 . . . . . . 7 (𝑡 = 𝑇 → ((𝑃𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑡) · (𝑍𝑖)) + (𝑡 · (𝑈𝑖))))) ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))))
4021, 39, 2brabg 5391 . . . . . 6 ((𝑃𝐷𝑇 ∈ (0[,)+∞)) → (𝑃𝐹𝑇 ↔ ((𝑃𝐷𝑇 ∈ (0[,)+∞)) ∧ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))))
4140bianabs 545 . . . . 5 ((𝑃𝐷𝑇 ∈ (0[,)+∞)) → (𝑃𝐹𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
42413adant1 1127 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷𝑇 ∈ (0[,)+∞)) → (𝑃𝐹𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
4315, 42bitrd 282 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷𝑇 ∈ (0[,)+∞)) → ((𝐹𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
44433expia 1118 . 2 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → (𝑇 ∈ (0[,)+∞) → ((𝐹𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖)))))))
458, 10, 44pm5.21ndd 384 1 ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍𝑈) ∧ 𝑃𝐷) → ((𝐹𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃𝑖) = (((1 − 𝑇) · (𝑍𝑖)) + (𝑇 · (𝑈𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  {crab 3110  cop 4531   class class class wbr 5030  {copab 5092   Fn wfn 6319  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  cmin 10859  cn 11625  [,)cico 12728  ...cfz 12885  𝔼cee 26682   Btwn cbtwn 26683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-z 11970  df-uz 12232  df-ico 12732  df-icc 12733  df-fz 12886  df-ee 26685  df-btwn 26686
This theorem is referenced by:  axcontlem6  26763
  Copyright terms: Public domain W3C validator