MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isph Structured version   Visualization version   GIF version

Theorem isph 30784
Description: The predicate "is an inner product space." (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isph.1 𝑋 = (BaseSet‘𝑈)
isph.2 𝐺 = ( +𝑣𝑈)
isph.3 𝑀 = ( −𝑣𝑈)
isph.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
isph (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isph
StepHypRef Expression
1 phnv 30776 . 2 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
2 isph.2 . . . . 5 𝐺 = ( +𝑣𝑈)
3 eqid 2729 . . . . 5 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 isph.6 . . . . 5 𝑁 = (normCV𝑈)
52, 3, 4nvop 30638 . . . 4 (𝑈 ∈ NrmCVec → 𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩)
6 eleq1 2816 . . . . 5 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (𝑈 ∈ CPreHilOLD ↔ ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD))
72fvexi 6840 . . . . . . 7 𝐺 ∈ V
8 fvex 6839 . . . . . . 7 ( ·𝑠OLD𝑈) ∈ V
94fvexi 6840 . . . . . . 7 𝑁 ∈ V
10 isph.1 . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
1110, 2bafval 30566 . . . . . . . 8 𝑋 = ran 𝐺
1211isphg 30779 . . . . . . 7 ((𝐺 ∈ V ∧ ( ·𝑠OLD𝑈) ∈ V ∧ 𝑁 ∈ V) → (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
137, 8, 9, 12mp3an 1463 . . . . . 6 (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
14 isph.3 . . . . . . . . . . . . . . . 16 𝑀 = ( −𝑣𝑈)
1510, 2, 3, 14nvmval 30604 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑀𝑦) = (𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))
16153expa 1118 . . . . . . . . . . . . . 14 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝑀𝑦) = (𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))
1716fveq2d 6830 . . . . . . . . . . . . 13 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑁‘(𝑥𝑀𝑦)) = (𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦))))
1817oveq1d 7368 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑁‘(𝑥𝑀𝑦))↑2) = ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2))
1918oveq2d 7369 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)))
2019eqeq1d 2731 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
2120ralbidva 3150 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (∀𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ ∀𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
2221ralbidva 3150 . . . . . . . 8 (𝑈 ∈ NrmCVec → (∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
2322pm5.32i 574 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))) ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
24 eleq1 2816 . . . . . . . 8 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (𝑈 ∈ NrmCVec ↔ ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec))
2524anbi1d 631 . . . . . . 7 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → ((𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))) ↔ (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
2623, 25bitr2id 284 . . . . . 6 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → ((⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))) ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
2713, 26bitrid 283 . . . . 5 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
286, 27bitrd 279 . . . 4 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
295, 28syl 17 . . 3 (𝑈 ∈ NrmCVec → (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
3029bianabs 541 . 2 (𝑈 ∈ NrmCVec → (𝑈 ∈ CPreHilOLD ↔ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
311, 30biadanii 821 1 (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  cop 4585  cfv 6486  (class class class)co 7353  1c1 11029   + caddc 11031   · cmul 11033  -cneg 11366  2c2 12201  cexp 13986  NrmCVeccnv 30546   +𝑣 cpv 30547  BaseSetcba 30548   ·𝑠OLD cns 30549  𝑣 cnsb 30551  normCVcnmcv 30552  CPreHilOLDccphlo 30774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-ltxr 11173  df-sub 11367  df-neg 11368  df-grpo 30455  df-gid 30456  df-ginv 30457  df-gdiv 30458  df-ablo 30507  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-vs 30561  df-nmcv 30562  df-ph 30775
This theorem is referenced by:  phpar2  30785
  Copyright terms: Public domain W3C validator