MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isph Structured version   Visualization version   GIF version

Theorem isph 30803
Description: The predicate "is an inner product space." (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isph.1 𝑋 = (BaseSet‘𝑈)
isph.2 𝐺 = ( +𝑣𝑈)
isph.3 𝑀 = ( −𝑣𝑈)
isph.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
isph (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isph
StepHypRef Expression
1 phnv 30795 . 2 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
2 isph.2 . . . . 5 𝐺 = ( +𝑣𝑈)
3 eqid 2735 . . . . 5 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 isph.6 . . . . 5 𝑁 = (normCV𝑈)
52, 3, 4nvop 30657 . . . 4 (𝑈 ∈ NrmCVec → 𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩)
6 eleq1 2822 . . . . 5 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (𝑈 ∈ CPreHilOLD ↔ ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD))
72fvexi 6890 . . . . . . 7 𝐺 ∈ V
8 fvex 6889 . . . . . . 7 ( ·𝑠OLD𝑈) ∈ V
94fvexi 6890 . . . . . . 7 𝑁 ∈ V
10 isph.1 . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
1110, 2bafval 30585 . . . . . . . 8 𝑋 = ran 𝐺
1211isphg 30798 . . . . . . 7 ((𝐺 ∈ V ∧ ( ·𝑠OLD𝑈) ∈ V ∧ 𝑁 ∈ V) → (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
137, 8, 9, 12mp3an 1463 . . . . . 6 (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
14 isph.3 . . . . . . . . . . . . . . . 16 𝑀 = ( −𝑣𝑈)
1510, 2, 3, 14nvmval 30623 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑀𝑦) = (𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))
16153expa 1118 . . . . . . . . . . . . . 14 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝑀𝑦) = (𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))
1716fveq2d 6880 . . . . . . . . . . . . 13 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑁‘(𝑥𝑀𝑦)) = (𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦))))
1817oveq1d 7420 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑁‘(𝑥𝑀𝑦))↑2) = ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2))
1918oveq2d 7421 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)))
2019eqeq1d 2737 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
2120ralbidva 3161 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (∀𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ ∀𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
2221ralbidva 3161 . . . . . . . 8 (𝑈 ∈ NrmCVec → (∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
2322pm5.32i 574 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))) ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
24 eleq1 2822 . . . . . . . 8 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (𝑈 ∈ NrmCVec ↔ ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec))
2524anbi1d 631 . . . . . . 7 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → ((𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))) ↔ (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
2623, 25bitr2id 284 . . . . . 6 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → ((⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1( ·𝑠OLD𝑈)𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))) ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
2713, 26bitrid 283 . . . . 5 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
286, 27bitrd 279 . . . 4 (𝑈 = ⟨⟨𝐺, ( ·𝑠OLD𝑈)⟩, 𝑁⟩ → (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
295, 28syl 17 . . 3 (𝑈 ∈ NrmCVec → (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
3029bianabs 541 . 2 (𝑈 ∈ NrmCVec → (𝑈 ∈ CPreHilOLD ↔ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
311, 30biadanii 821 1 (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  cop 4607  cfv 6531  (class class class)co 7405  1c1 11130   + caddc 11132   · cmul 11134  -cneg 11467  2c2 12295  cexp 14079  NrmCVeccnv 30565   +𝑣 cpv 30566  BaseSetcba 30567   ·𝑠OLD cns 30568  𝑣 cnsb 30570  normCVcnmcv 30571  CPreHilOLDccphlo 30793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274  df-sub 11468  df-neg 11469  df-grpo 30474  df-gid 30475  df-ginv 30476  df-gdiv 30477  df-ablo 30526  df-vc 30540  df-nv 30573  df-va 30576  df-ba 30577  df-sm 30578  df-0v 30579  df-vs 30580  df-nmcv 30581  df-ph 30794
This theorem is referenced by:  phpar2  30804
  Copyright terms: Public domain W3C validator