Proof of Theorem ov
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-ov 7434 | . . . . 5
⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | 
| 2 |  | ov.6 | . . . . . 6
⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} | 
| 3 | 2 | fveq1i 6907 | . . . . 5
⊢ (𝐹‘〈𝐴, 𝐵〉) = ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}‘〈𝐴, 𝐵〉) | 
| 4 | 1, 3 | eqtri 2765 | . . . 4
⊢ (𝐴𝐹𝐵) = ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}‘〈𝐴, 𝐵〉) | 
| 5 | 4 | eqeq1i 2742 | . . 3
⊢ ((𝐴𝐹𝐵) = 𝐶 ↔ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}‘〈𝐴, 𝐵〉) = 𝐶) | 
| 6 |  | ov.5 | . . . . . 6
⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃!𝑧𝜑) | 
| 7 | 6 | fnoprab 7558 | . . . . 5
⊢
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} Fn {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)} | 
| 8 |  | eleq1 2829 | . . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑅 ↔ 𝐴 ∈ 𝑅)) | 
| 9 | 8 | anbi1d 631 | . . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ↔ (𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆))) | 
| 10 |  | eleq1 2829 | . . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑆 ↔ 𝐵 ∈ 𝑆)) | 
| 11 | 10 | anbi2d 630 | . . . . . . 7
⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆))) | 
| 12 | 9, 11 | opelopabg 5543 | . . . . . 6
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)} ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆))) | 
| 13 | 12 | ibir 268 | . . . . 5
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)}) | 
| 14 |  | fnopfvb 6960 | . . . . 5
⊢
(({〈〈𝑥,
𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} Fn {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)} ∧ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)}) → (({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)})) | 
| 15 | 7, 13, 14 | sylancr 587 | . . . 4
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)})) | 
| 16 |  | ov.1 | . . . . 5
⊢ 𝐶 ∈ V | 
| 17 |  | ov.2 | . . . . . . 7
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| 18 | 9, 17 | anbi12d 632 | . . . . . 6
⊢ (𝑥 = 𝐴 → (((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑) ↔ ((𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜓))) | 
| 19 |  | ov.3 | . . . . . . 7
⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | 
| 20 | 11, 19 | anbi12d 632 | . . . . . 6
⊢ (𝑦 = 𝐵 → (((𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜓) ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝜒))) | 
| 21 |  | ov.4 | . . . . . . 7
⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | 
| 22 | 21 | anbi2d 630 | . . . . . 6
⊢ (𝑧 = 𝐶 → (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝜒) ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝜃))) | 
| 23 | 18, 20, 22 | eloprabg 7543 | . . . . 5
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ V) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝜃))) | 
| 24 | 16, 23 | mp3an3 1452 | . . . 4
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝜃))) | 
| 25 | 15, 24 | bitrd 279 | . . 3
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}‘〈𝐴, 𝐵〉) = 𝐶 ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝜃))) | 
| 26 | 5, 25 | bitrid 283 | . 2
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) = 𝐶 ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝜃))) | 
| 27 | 26 | bianabs 541 | 1
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) = 𝐶 ↔ 𝜃)) |