![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > risc | Structured version Visualization version GIF version |
Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
risc | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 ≃𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isriscg 34270 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆)))) | |
2 | 1 | bianabs 538 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 ≃𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∃wex 1875 ∈ wcel 2157 class class class wbr 4843 (class class class)co 6878 RingOpscrngo 34180 RngIso crngiso 34247 ≃𝑟 crisc 34248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-iota 6064 df-fv 6109 df-ov 6881 df-risc 34269 |
This theorem is referenced by: risci 34273 |
Copyright terms: Public domain | W3C validator |