Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  risc Structured version   Visualization version   GIF version

Theorem risc 36132
Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
risc ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆)))
Distinct variable groups:   𝑅,𝑓   𝑆,𝑓

Proof of Theorem risc
StepHypRef Expression
1 isriscg 36130 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))))
21bianabs 542 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wex 1786  wcel 2110   class class class wbr 5079  (class class class)co 7269  RingOpscrngo 36040   RngIso crngiso 36107  𝑟 crisc 36108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-iota 6389  df-fv 6439  df-ov 7272  df-risc 36129
This theorem is referenced by:  risci  36133
  Copyright terms: Public domain W3C validator