Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  risc Structured version   Visualization version   GIF version

Theorem risc 37590
Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
risc ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))
Distinct variable groups:   𝑅,𝑓   𝑆,𝑓

Proof of Theorem risc
StepHypRef Expression
1 isriscg 37588 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))))
21bianabs 540 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wex 1773  wcel 2098   class class class wbr 5149  (class class class)co 7419  RingOpscrngo 37498   RingOpsIso crngoiso 37565  𝑟 crisc 37566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-iota 6501  df-fv 6557  df-ov 7422  df-risc 37587
This theorem is referenced by:  risci  37591
  Copyright terms: Public domain W3C validator