MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltval Structured version   Visualization version   GIF version

Theorem sltval 27147
Description: The value of the surreal less-than relation. (Contributed by Scott Fenton, 14-Jun-2011.)
Assertion
Ref Expression
sltval ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem sltval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2821 . . . . 5 (𝑓 = 𝐴 → (𝑓 No 𝐴 No ))
21anbi1d 630 . . . 4 (𝑓 = 𝐴 → ((𝑓 No 𝑔 No ) ↔ (𝐴 No 𝑔 No )))
3 fveq1 6890 . . . . . . . 8 (𝑓 = 𝐴 → (𝑓𝑦) = (𝐴𝑦))
43eqeq1d 2734 . . . . . . 7 (𝑓 = 𝐴 → ((𝑓𝑦) = (𝑔𝑦) ↔ (𝐴𝑦) = (𝑔𝑦)))
54ralbidv 3177 . . . . . 6 (𝑓 = 𝐴 → (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ↔ ∀𝑦𝑥 (𝐴𝑦) = (𝑔𝑦)))
6 fveq1 6890 . . . . . . 7 (𝑓 = 𝐴 → (𝑓𝑥) = (𝐴𝑥))
76breq1d 5158 . . . . . 6 (𝑓 = 𝐴 → ((𝑓𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥) ↔ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥)))
85, 7anbi12d 631 . . . . 5 (𝑓 = 𝐴 → ((∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥)) ↔ (∀𝑦𝑥 (𝐴𝑦) = (𝑔𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥))))
98rexbidv 3178 . . . 4 (𝑓 = 𝐴 → (∃𝑥 ∈ On (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥)) ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝑔𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥))))
102, 9anbi12d 631 . . 3 (𝑓 = 𝐴 → (((𝑓 No 𝑔 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥))) ↔ ((𝐴 No 𝑔 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝑔𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥)))))
11 eleq1 2821 . . . . 5 (𝑔 = 𝐵 → (𝑔 No 𝐵 No ))
1211anbi2d 629 . . . 4 (𝑔 = 𝐵 → ((𝐴 No 𝑔 No ) ↔ (𝐴 No 𝐵 No )))
13 fveq1 6890 . . . . . . . 8 (𝑔 = 𝐵 → (𝑔𝑦) = (𝐵𝑦))
1413eqeq2d 2743 . . . . . . 7 (𝑔 = 𝐵 → ((𝐴𝑦) = (𝑔𝑦) ↔ (𝐴𝑦) = (𝐵𝑦)))
1514ralbidv 3177 . . . . . 6 (𝑔 = 𝐵 → (∀𝑦𝑥 (𝐴𝑦) = (𝑔𝑦) ↔ ∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦)))
16 fveq1 6890 . . . . . . 7 (𝑔 = 𝐵 → (𝑔𝑥) = (𝐵𝑥))
1716breq2d 5160 . . . . . 6 (𝑔 = 𝐵 → ((𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥) ↔ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
1815, 17anbi12d 631 . . . . 5 (𝑔 = 𝐵 → ((∀𝑦𝑥 (𝐴𝑦) = (𝑔𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥)) ↔ (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
1918rexbidv 3178 . . . 4 (𝑔 = 𝐵 → (∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝑔𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥)) ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
2012, 19anbi12d 631 . . 3 (𝑔 = 𝐵 → (((𝐴 No 𝑔 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝑔𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥))) ↔ ((𝐴 No 𝐵 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))))
21 df-slt 27144 . . 3 <s = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 No 𝑔 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥)))}
2210, 20, 21brabg 5539 . 2 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ((𝐴 No 𝐵 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))))
2322bianabs 542 1 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = (𝐵𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  c0 4322  {ctp 4632  cop 4634   class class class wbr 5148  Oncon0 6364  cfv 6543  1oc1o 8458  2oc2o 8459   No csur 27140   <s cslt 27141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-iota 6495  df-fv 6551  df-slt 27144
This theorem is referenced by:  sltval2  27156  sltres  27162  nolesgn2o  27171  nogesgn1o  27173  nodense  27192  nolt02o  27195  nogt01o  27196  nosupbnd2lem1  27215  noinfbnd2lem1  27230
  Copyright terms: Public domain W3C validator